
• Design and implement robust ADF architecture for seamless
integration

• Choose technologies that enhance the framework’s performance
and scalability

• Manage versioning and packaging for efficient software distribution

• Create a secure environment that protects your development process

• Foster collaboration for a flexible and extensible ADF ecosystem

• Measure and optimize performance to ensure continuous
improvement

WHAT YOU WILL LEARN

Building an Application
Development Framework

www.packtpub.com

Empower your engineering teams with custom frameworks

First Edition

Building an Application
Development Framework

IVAN PADABED | ROMAN VORONIN

Transform the way you build software with ADFs designed for agility and success. In today’s competitive
tech landscape, ineff icient software development processes can hold your organizational back. Writt en by
two tech experts who have architected success across many cutt ing-edge start-ups, Building an Application
Development Framework addresses this challenge by introducing you to the power of ADFs. You’ll explore
core concepts, uncover the strategic advantages of ADFs, and learn how to architect a custom framework
tailored to your specifi c needs and business goals.

Through practical guidance and real-world case studies, you’ll gain mastery over critical elements, such
as version control, packaging, testing, and documentation. The book emphasizes fostering an extensible
ecosystem for your ADF, empowering your engineering teams to navigate the ever-evolving technological
landscape with confi dence and agility.

Ivan Padabed and Roman Voronin bring their experience of transforming complex engineering challenges
into scalable solutions to equip you with the knowledge you need to drive eff iciency, enhance quality, and
achieve long-term success through a powerful, reusable ADF that can adapt to changing requirements.

By the end of this book, you’ll be able to unlock the potential of your development processes and elevate
your team’s productivity.

IVAN PADABED
ROMAN VORONIN

B
uild

in
g

 a
n

 A
p

p
lica

tio
n

D

evelo
p

m
en

t F
ra

m
ew

o
rk

Building an Application
Development Framework

Empower your engineering teams with custom frameworks

Ivan Padabed
Roman Voronin

Building an Application Development Framework
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kunal Chaudhari

Relationship Lead: Samriddhi Murarka

Project Manager: Ashwin Dinesh Kharwa

Content Engineer: Deepayan Bhattacharjee

Technical Editor: Irfa Ansari

Copy Editor: Safis Editing

Indexer: Tejal Soni

Proofreader: Deepayan Bhattacharjee

Production Designer: Jyoti Kadam, Nilesh Mohite

Growth Lead: Mansi Shah

First published: September 2025

Production reference: 1240925

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83620-857-0

www.packtpub.com

http://www.packtpub.com

I want to express my gratitude to the welcoming country of Portugal – its people, land, ocean, and

sun – which gave me and my family new hope and a new home in a time of uncertainty and despair.

– Ivan Padabed

Contributors

About the authors
Ivan Padabed is a co-founder and CEO at System5Dev, a start-up focused on applying AI to

systems architecture; a cloud platform architect at Intapp (a B2B SaaS platform); and an expert

at Primary Venture Mastermind Network.

He is an experienced IT professional with over 25 years of experience in the industry, having fos-

tered great teams and built high-end products as a systems architect. He is a community leader,

conference speaker, writer, systems engineering discipline evangelist, author, and instructor of

multiple engineering courses. He’s also an active researcher in systems architecture and AI.

Outside of work, Ivan is a happy father of four, a husband, and the proud owner of a black cat.

He loves gym workouts, soccer games, exploring mountains and nature trails, and relaxing with

Terry Pratchett and Warhammer 40k novels.

I would like to thank my coworkers who were not afraid to take on my crazy ideas and make them work—you

know who you are.

Roman Voronin is the co-founder and CTO of System5Dev, where he shapes AI-ready system

designs, and a senior MLOps engineer at Intapp. With more than 20 years of experience in tech-

nology, he champions AWS-driven DevOps, shares insights as a long-standing AWS Community

Builder, and authors practical articles on cloud architecture. Away from keyboards, Roman un-

winds by playing guitar and exploring medieval-style fantasy worlds.

For Maria, Katya, Alexa, and Vitaliy. All of them.

About the reviewer
Sergej Tretjakov is a staff software engineer at PandaDoc with 15+ years of experience in

backend development, architecture, and technical leadership. He currently leads the document

domain and was previously responsible for the ML subdomain, focusing on MLOps and model

integration. At WorkFusion, he developed the core product and led engineering teams. Later, in

the delivery engineering department, he worked directly with customers to align product ca-

pabilities with business needs—driving enhancements to the internal automation framework,

prototyping architectural improvements, and building reusable libraries to extend its functionality

and accelerate development.

Table of Contents

Preface � xvii

Part 1: Foundations of Application Development
Frameworks � 1
Understanding the landscape and building a common language. �� 1

Chapter 1: Introduction to Application Development Frameworks � 3

Getting the most out of this book – get to know your free benefits �������������������������������������� 4

Next-gen reader • 4

Interactive AI assistant (beta) • 5

DRM-free PDF or ePub version • 5

Introduction and historical references ��� 6

Breaking down Application Development Framework �� 10

Application Programming Interface • 11

Library • 12

Software Development Kit • 14

Framework • 15

Platform • 18

Domain Specific Language • 20

Differentiating ADF and other Types of Frameworks �� 21

Architecture Frameworks • 22

Software Delivery Frameworks • 23

Table of Contentsviii

Software Development Lifecycle (SDLC) and Flow �� 24

Summary ��� 25

Reference ��� 26

Chapter 2: Strategizing ADF for Success � 27

Introducing Systems Engineering as the grounding theory ��� 28

Establishing a Context for the framework ��� 29

Django • 30

ReactJS – building a better ads engine • 31

Defining ADF success factors ��� 32

Engineering leaders (CTOs, Engineering Directors, Team Leads) • 32

Architects • 33

Developers • 34

 Quality Assurance (QA) • 34

Product Managers and Business Analysts • 34

Exploring Software Development Lifecycle models ��� 36

Estimating success metrics and ROI �� 39

Shift towards Open Source Software paradigm �� 48

Increased innovation and collaboration • 49

Enhanced security • 49

Cost efficiency • 49

Improved quality and reliability • 49

Technological brand, community, and ecosystem building • 49

Talent attraction and retention • 50

Market positioning and reputation • 50

Interoperability and standards • 50

Efficient technical problem resolution • 50

Educational value • 50

Regulatory and compliance benefits • 51

Summary �� 51

Table of Contents ix

Chapter 3: Application Development Framework Blueprint � 53

ADF structure patterns ��� 54

Entity/object definition • 54

Model-View-Controller • 56

Model-View-Presenter • 56

Model-View-Template • 56

Entity/object registration • 57

Managing object processors • 59

Extending by functional plugins • 62

Technical flow pattern • 64

Data flow • 67

Error handling and recovery • 68

Source code structuring • 69

Ease of navigation and discoverability • 70

Minimal dependencies • 70

Source code availability • 70

Other recommendations and best practices • 71

ADF maturity model ��� 72

ADF MM levels • 74

Level 1: Unextracted • 74

Level 2: Minimal viable Framework (MVF) • 75

Level 3: Bulletproof Framework • 76

Level 4: Advanced extensible Framework • 77

Level 5: Comprehensive ecosystem Framework • 78

Defining a tech stack • 80

Technologies • 80

ADF Canvas guide �� 81

Programming languages • 82

Development tooling • 83

Summary ��� 83

Table of Contentsx

Part 2: Building a Framework � 85
Design, architecture, and implementation practices ��� 85

Chapter 4: Defining Your Tech Stack � 87

Key concept and alignment with technological realms ��� 88

Exploring languages and libraries �� 92

Programming languages • 93

Core programming languages • 93

Interface programming languages • 94

 Configuration and management languages • 94

Storage, transport, and calculations • 95

Typical storage requirements • 95

Relational databases • 97

NoSQL databases • 99

Columnar databases • 104

Graph databases • 106

Storage • 108

File storage • 108

Block storage • 108

Object storage • 109

Distributed log storage • 109

Vector databases • 112

RAG storage engine selection • 114

Transport and contract definition • 115

Shared memory • 117

Networking in distributed systems • 118

Message brokers • 119

Pub/sub systems • 120

GraphQL • 126

gRPC • 128

Table of Contents xi

Platforms for computation and distributed computing • 132

Parallelized calculation platforms and APIs • 132

Distributed computing engines • 134

Summary �� 137

Chapter 5: Architecture Design � 139

General tasks of framework architecture ��� 140

Framework level: building the foundation • 141

Framework community level: extending the ecosystem • 142

Application level: the final layer of implementation • 143

Framework architecture components �� 144

Core • 144

Libraries and drivers • 145

Design patterns �� 146

Code patterns • 146

MVC • 147

HMVC • 148

MVVM • 149

MVP • 150

Data management patterns • 151

CQRS pattern • 151

Event Sourcing pattern • 151

Materialized View pattern • 152

Structuring a framework for extensibility ��� 153

Modular design • 153

Leveraging design patterns • 153

Dependency injection • 154

API-first design • 154

Configuration management • 154

Versioning strategy • 154

Table of Contentsxii

Extensible data model • 154

Summary �� 155

Chapter 6: ADF Development Fundamentals � 157

Prototyping techniques and best practices �� 158

A minimal agent invocation • 159

Defining core abstractions and control flow • 161

Introducing roles and agent routing • 164

Separating the framework into a package and introducing the application context • 167

Packaging and distributing • 173

Libraries and transports • 178

Embracing agile principles for responsive development ��� 183

Summary �� 187

Chapter 7: Documenting and Releasing a Framework � 189

Establishing a robust documentation foundation �� 190

Documentation as a continuation of an ADF • 190

Types of documentation • 192

Documentation focus by ADF maturity level • 193

Automating documentation generation • 193

Using source control systems for documentation publishing and hosting • 195

End-to-end generation, publishing, and hosting • 197

Navigation and search for ADF documentation • 199

Structuring navigation for ADF documentation • 199

Enhancing search with indexing and metadata • 200

Cross-linking and contextual navigation • 200

Step-by-step guide: Building and maintaining ADF documentation ������������������������������ 200

Creating a concept-level description • 201

Providing architecture references • 202

Writing tutorial guides for ADF adoption • 203

Table of Contents xiii

How-to guides for specific scenarios • 205

Generating and maintaining reference documentation • 206

Ongoing maintenance and documentation strategy • 207

Developing and optimizing API documentation for clarity and usability ������������������������� 209

Documenting how to define and implement APIs • 209

Supporting application developers in creating their own API documentation • 210

Schema-driven versus code-first approach • 210

Integration with common documentation tools • 211

Enhancing developer productivity through integrated tooling • 211

Summarizing the documentation strategy for ADF-enabled APIs • 212

Implementing effective versioning and release strategies ��� 213

Build and deployment process • 213

Repository and branching strategy • 213

Build automation • 214

Release and artifact distribution • 214

Release lifecycle phases • 215

Complementary release practices • 216

Versioning and metadata • 216

Navigating issue tracking and collaboration platforms • 217

Summary ��� 218

Part 3: Evolving a Framework � 221
Sustaining relevance through continuous improvement �� 221

Chapter 8: Evolving a Framework � 223

Embarking on an ADF initiative ��� 223

Uncovering the opportunity • 224

Collaborating: finding your team • 225

Identifying “quick wins” • 225

Get support to secure resources • 226

Table of Contentsxiv

Making it transparent and useful for others • 226

Enjoying the process • 227

Guiding the ADF initiative: a product way • 227

Adopting the product mindset for your ADF • 227

Establishing feedback loops • 228

Prioritization and iteration • 228

Roadmapping beyond the initial build • 228

Measuring success and proving value • 228

Adoption metrics • 228

Developer Experience (DevEx) metrics • 229

SDLC impact metrics • 229

Closing the loop: measurement informs the path • 230

Hardening security along the ADF evolution path ��� 230

Secure design and architecture • 230

Secure-by-default framework APIs • 230

Strict abstraction boundaries and isolation • 231

Role-based access control for components • 231

Secure runtime patterns • 232

Language-specific security strategies • 233

Incident response and vulnerability disclosure • 234

Establishing a security team or responsible persons • 234

Triage and risk assessment • 234

Developing the fix in private • 235

Coordinated disclosure timing • 235

Preparing the advisory • 235

Issuing patches and updates • 236

Post-incident analysis • 236

Handling public vulnerability reports • 236

Incident response for compromises • 236

Table of Contents xv

Community trust • 236

Security practices mapped to ADF maturity levels • 237

Finding inspiration from the creators �� 239

Key role of Developer Experience (DX) • 240

Maintenance effort grows over time • 240

The priority of documentation • 241

The importance of community • 242

Framework security: responsibilities and challenges • 243

Balancing framework specialization and universalization • 243

AI-native development with an ADF �� 244

Integrating generative AI with ADFs • 244

Constitutional AI as a guiding paradigm • 245

Anatomy of a framework constitution (FRAMEWORK.md) • 245

The system prompt: establishing the AI’s persona • 247

Embedding advanced prompting techniques in the constitution • 248

Meta-prompts and self-correction loops • 249

Multi-agent systems: a phased approach to a “panel of experts” • 249

Phase 1: the dedicated “framework expert” • 250

Phase 2: decomposition into a specialized panel • 250

Phase 3: hierarchical orchestration • 251

Summary ��� 252

1. What ADFs are all about and why they’re a big deal (Chapter 1) • 252

2. Why and how to get started with your ADF (Chapters 2 and 8) • 252

3. Smart building: good design, solid tech, and practical steps (Chapters 3, 4, 5, and 6) • 253

4. Making your framework real: docs, releases, and security (Chapters 6, 7, and 8) • 254

5. Keeping it going: a product approach for lasting value (Chapters 2 and 8) • 254

6. The never-ending story: the rewarding work of building frameworks (Chapter 8) • 255

7. Final words: the last mile • 255

Table of Contentsxvi

Chapter 9: Unlock Your Book’s Exclusive Benefits � 257

How to unlock these benefits in three easy steps ��� 257

Step 1 • 257

Step 2 • 258

Step 3 • 258

Need help? • 259

Index � 261

Other Books You May Enjoy � 275

Preface

Building an Application Development Framework is a hands-on guide for engineers, architects, and

technical leads who are ready to go beyond using frameworks and start creating their own. In

today’s world of rapidly evolving software architectures, reusable abstractions are more valuable

than ever – not just as productivity tools, but as strategic assets that encode architecture, reduce

cognitive load, and scale engineering culture. This book introduces a structured and pragmatic

approach to building your own ADF, grounded in real-world case studies and seasoned with

lessons from open source ecosystems and enterprise platforms alike.

Whether you’re developing a framework for internal use, open source contribution, or as a core

product strategy, this book gives you the tools to make it modular, evolvable, and developer-friend-

ly from day one.

Who this book is for
This book is written for experienced software engineers, architects, platform engineers, and

technical product owners. You should be familiar with core software design principles, modern

development practices (such as CI/CD), and one or more programming ecosystems (e.g., Python,

JavaScript, or Java). No prior experience in framework development is required—just a desire to

make something reusable, powerful, and thoughtfully designed.

What this book covers
Chapter 1, Introduction to Application Development Frameworks, provides a clear definition of what

a framework is, how it differs from libraries, SDKs, and platforms, and why building your own

framework is both powerful and risky.

Chapter 2, Strategizing ADF for Success, covers the business and organizational rationale for build-

ing a framework. It introduces the systems engineering perspective and a framework ROI model.

Prefacexviii

Chapter 3, Application Development Framework Blueprint, introduces the ADF Canvas and internal

structural patterns that help you design your framework with clarity, modularity, and long-term

vision.

Chapter 4, Defining Your Tech Stack, helps you choose the right programming languages, data

storage, communication patterns, and runtime environment for your framework’s context.

Chapter 5, Architecture Design, explains how to architect a framework for extensibility, performance,

and composability, with design patterns and trade-offs relevant to modern software systems.

Chapter 6, ADF Development Fundamentals, focuses on the runtime behavior of your ADF, including

plugin models, processing pipelines, and interaction patterns between framework components.

Chapter 7, Documenting and Releasing a Framework, covers the often-overlooked side of framework

development: documentation, release strategy, API publishing, and collaborative issue tracking.

Chapter 8, Evolving a Framework, explores long-term maintainability, maturity modeling, continu-

ous integration of improvements, and how to structure your framework for evolution. As a bonus,

this chapter includes a brief outline of AI-native approaches to developing ADF.

To get the most out of this book
You should be comfortable reading and writing code in at least one general-purpose programming

language, and familiar with how software projects are structured. Prior knowledge of frame-

works such as Django, React, Spring, or LangChain will help you relate to the examples, but is

not required. The book is designed to be technology-agnostic while providing real-world code

references throughout. You will need the following:

•	 Operating system requirements: Windows, macOS, or Linux

•	 Sample stack usage in examples:

•	 Python 3.10+

•	 Docker 24+

•	 OpenSearch as a vector database

•	 GitHub Pages for documentation hosting

You may use your preferred local IDE or cloud-based development environment. Code samples

are designed to run in containerized environments with minimal setup. Instructions are provided

throughout relevant chapters.

Preface xix

If you are using the digital version of this book, we advise you to type the code yourself or access

the code from the book’s GitHub repository (a link is available in the next section). Doing so will

help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at

https://github.com/PacktPublishing/Building-an-Application-Development-Framework.

If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/.

Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836208570

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X/Twitter handles. Here is an example:

“Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

{

 “name”: “John Doe”,

 “age”: 30,

 “isAdmin”: false

}

Any command-line input or output is written as follows:

uv init --lib

https://github.com/PacktPublishing/Building-an-Application-Development-Framework
https://github.com/PacktPublishing/
https://packt.link/gbp/9781836208570

Prefacexx

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,

words in menus or dialog boxes appear in bold. Here is an example: “Select System info from

the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

Warnings or important notes appear like this.

Tips and tricks appear like this.

mailto:customercare@packt.com
http://www.packt.com/submit-errata
mailto:copyright@packt.com
http://authors.packt.com/

Preface xxi

Share your thoughts
Once you’ve read Building an Application Development Framework, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/183620857X

Part 1
Foundations of

Application Development
Frameworks

Understanding the landscape and building a common
language.
This part lays the conceptual foundation necessary to build, adopt, or evolve an Application

Development Framework (ADF). Whether you’re an individual engineer or a technical leader,

these chapters will help you define what an ADF is, distinguish it from other engineering tools

such as platforms and SDKs, and grasp the core success factors. By the end of this part, you’ll be

ready to critically evaluate or initiate ADF-related initiatives with clarity and confidence.

This part has the following chapters:

•	 Chapter 1, Introduction to Application Development Frameworks

•	 Chapter 2, Strategizing ADF for Success

•	 Chapter 3, Application Development Framework Blueprint

1
Introduction to Application
Development Frameworks

In this book we will be delving into the different aspects of an Application Development Frame-

work (ADF) lifecycle, allowing individual software engineers, development teams, and engineer-

ing organizations to benefit from ADF’s great potential. The initial chapter of the book is focused

on providing a wide context for future chapters, setting a common ground for all ADF stakeholders,

and introducing basic classifications and definitions for future use.

The concept of Application Development Framework (ADF) has been well-known for a long time,

but we need to set up a crystal-clear context for further reading. This is important because it helps

us deal with this complex topic by setting common ground for definitions and classifications that

will be used throughout the book. First, we explore the evolution of the idea of ADF. After that,

we discover the differences and connections between other SDLC-focused technologies, such as

Platforms, Libraries, SDKs, and APIs, to craft a brief but concise definition that helps us keep a

big picture while diving deep into implementation topics. Then, we review the place of ADF in

the Software Development Lifecycle to identify and prove the advantages of adopting an ADF.

In this chapter we’re going to cover the following main topics:

•	 Introduction and historical references

•	 Breaking down Application Development Framework

•	 Exploring ADF and Platforms, Libraries, SDKs, APIs

•	 Integrating into Software Development Lifecycle (SDLC) and Flow

•	 Differentiating ADF and other types of Frameworks

Introduction to Application Development Frameworks4

Getting the most out of this book – get to know your
free benefits
Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge

your learning journey and help you learn without limits.

Here’s a quick overview of what you get with this book:

Next-gen reader

Figure 1.1: Illustration of the next-gen
Packt Reader’s features

Our web-based reader, designed to help you learn

effectively, comes with the following features:

 Multi-device progress sync: Learn from any

device with seamless progress sync.

 Highlighting and notetaking: Turn your read-

ing into lasting knowledge.

 Bookmarking: Revisit your most important

learnings anytime.

 Dark mode: Focus with minimal eye strain by

switching to dark or sepia mode.

Chapter 1 5

Interactive AI assistant (beta)

Figure 1.2: Illustration of Packt’s AI
assistant

Our interactive AI assistant has been trained

on the content of this book, to maximize your

learning experience. It comes with the follow-

ing features:

 Summarize it: Summarize key sections or an

entire chapter.

 AI code explainers: In the next-gen Packt

Reader, click the Explain button above each

code block for AI-powered code explanations.

Note: The AI assistant is part of next-gen Packt

Reader and is still in beta.

DRM-free PDF or ePub version

Figure 1.3: Free PDF and ePub

Learn without limits with the following perks

included with your purchase:

 Learn from anywhere with a DRM-free PDF

copy of this book.

 Use your favorite e-reader to learn using a

DRM-free ePub version of this book.

Introduction to Application Development Frameworks6

Introduction and historical references
Engineers have a long and productive history of creating building blocks for their own convenience.

If we do not ignore this historical experience, we can learn many useful lessons for creating our

own frameworks.

From the very beginning of the software industry, engineers and scientists have had a tendency

to reuse their most successful and efficient ideas. There are quite a few historical practices that

share the core objectives of a framework:

•	 Architectural Blueprints: Since ancient times, complex structures like buildings or ships

were built based on detailed plans. These plans defined the overall structure, compo-

nents, and relationships - similar to how frameworks provide a blueprint for software

architecture.

•	 Modular Design in Engineering: Even before the computer age, engineers approached

complex machines with a modular mindset. Think of early steam engines with inter-

changeable parts - a principle that carries over to software components within a frame-

work.

•	 Mathematical Frameworks: For centuries, mathematicians have relied on established

frameworks like algebra or calculus to solve problems. These frameworks provide a set of

rules and structures that guide the approach to solving a specific type of problem.

While these aren’t direct equivalents to software frameworks, they all represent historical ap-

proaches to structuring complex systems in a way that aligns with the core function of a software

development framework—to simplify the lives of its users when dealing with complex problems.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search

for this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Chapter 1 7

With the advent and adoption of computers, the concept of a framework has gone beyond the

art of the elite and has become part of the daily work of many programmers. The idea evolved

as computers themselves developed. Here are some contenders for the title of earliest software

framework:

•	 Early Subroutine Libraries (1940s – 1950s): In the early days of computing, programmers

might develop reusable code blocks for common tasks like mathematical functions or

input/output routines. These weren’t full-fledged frameworks, but they offered a basic

level of reusability and structure.

•	 FORTRAN Compilers (1950s): FORTRAN introduced the concept of high-level languages,

allowing programmers to write code that is more human-readable than machine code.

While not exactly a framework, it provided a foundational structure for building software.

•	 Operating Systems (1960s onwards): Operating systems like IBM’s OS/360 offered a

platform for running applications. They provided core functionalities like memory man-

agement and device drivers, which later frameworks were built upon.

It’s important to remember that the concept of a software development framework as we know

it today – offering a comprehensive set of tools, libraries, and design patterns – is a more recent

development. However, these earlier practices laid the groundwork for the frameworks we use

today. In the modern world, we can only imagine the practical purpose software created on top

of one or multiple frameworks.

 Note

This book uses both terms “software development framework (SDF)” and “appli-

cation development framework (ADF)” interchangeably. Usually, “application” is

not exactly the same as “software”: we have platforms, libraries, SDKs, engineering

tools and frameworks as alternative kinds of software. But in the context of the topic

(“building frameworks”) we can always safely assume that any “software” we are

going to develop with our frameworks will serve the same purpose as “application”

with a minor exception of “infrastructure management frameworks” which are

mentioned explicitly.

Introduction to Application Development Frameworks8

While most of the information on the internet about Application Development Frameworks is

focused on web and mobile development, we cannot ignore trending frameworks from a non-ap-

plication software, such as

•	 Artificial Intelligence and Machine Learning (like PyTorch, TensorFlow, and Apache MX-

Net),

•	 Scheduled task management (like Celery, Temporal, and Apache Airflow),

•	 Infrastructure management (like Terraform, Pulumi, and Crossplane),

•	 Testing automation (like Selenium, Robot, and webdriverIO),

and many others, including “hybrid” frameworks that provide multiple capabilities at once.

Fortunately, foundational principles of building software frameworks are common between

classic ADF and these emerging types of SDF.

There are also vertical ADFs, aiming to cover corresponding business domains. Examples of such

frameworks include Gamedev (Flame, Monogame), Data Visualization (Shiny, Seaborn, Tensor-

Board), Hardware Instrumentation (LabVIEW), etc.

A StackOverflow research in 2023 that involved approximately 90,000 software engineers

provided us with data about frameworks they use daily (https://survey.stackoverflow.

co/2023#section-most-loved-dreaded-and-wanted-web-frameworks - see a Figure 1.4 that

summarizes one of the framework-related topics from this survey). In addition to those numbers,

we know that many frameworks have their own communities outside of StackOverflow, which

means that more than 100k engineers work with software frameworks on a daily basis.

https://survey.stackoverflow.co/2023#section-most-loved-dreaded-and-wanted-web-frameworks
https://survey.stackoverflow.co/2023#section-most-loved-dreaded-and-wanted-web-frameworks

Chapter 1 9

Figure 1.4: StackOverflow research summary chart

Introduction to Application Development Frameworks10

With all the wide adoption of ADFs, it is confusing to see how many different inconsistent defi-

nitions and classifications we have all around the internet. In the following section, we will

craft a brief and concise definition based on ADFs unique differentiators in a world of software

engineering.

Breaking down Application Development Framework
I often see engineers mixing up libraries, frameworks, and Software Development Kits. They use

these words like they mean the same thing. Even more confusion can come if we add APIs, plat-

forms, and DSLs to the conversation. But to make our own framework, we need to understand

all these things.

According to Dictionary.com, the formal definition of the term “framework” is “a basic structure,

plan, or system, as of concepts, values, customs, or rules”.

The collective unconscious of humanity, also known as LLM, suggests the following definition for

ADF: An application development framework is a software library offering a fundamental structure for

building applications within a specific environment. It acts as a reusable foundation, supplying pre-de-

fined functionalities and promoting code organization through established conventions. This approach

streamlines development by reducing repetitive coding efforts.

Both definitions are formally correct (except for “library” part of the second one, which I will

explain later in this section). But they focus on how the framework is designed but have a lack of

explanation about how it works. I am going to fill this gap by adding my own:

It is a common misunderstanding to confuse frameworks with other engineering concepts aiming

towards reusability, like API, software library, SDK, and platform. And there is always a special

“tooling” category, which covers a wide range of software from smaller console scripts to powerful

configurable logs processing pipelines – they all live their own life as they only used by developers

to support their routine tasks, so we keep them out of conversation. Let’s set clear boundaries to

understand their differences to focus on the most important aspects of our topic.

 Definition

A collection of pre-written code and tools that provide a structured approach to

building applications. It simplifies development by enforcing architectural patterns:

frameworks always dictate an execution flow, and stipulate specific way to struc-

ture your code, promoting maintainability, testability, low coupling, and reusability.

Chapter 1 11

Application Programming Interface
Starting from API (Application Programming Interface) as the lowest-level implementation

of the development tooling. The traditional understanding of API included any exposed inter-

face available to software developers to perform manipulation with an external subsystem. This

external subsystem was treated as a “black box,” which means that the developer should not

worry about its internal implementation, tech stack, and logic. Thus, API provides a complete

set of methods to deal with it. Modern understanding of the API concept drifted towards over-

the-network API, like HTTP/gRPC/websocket APIs. Events and message-based communication

interfaces are also subsets of APIs – like webhooks.

The best practice of API definition is to use open standards like OpenAPI and AsyncAPI schema

languages, or other less popular languages like RAML.org or APIBlueprint.org. However, it is

acceptable to use proprietary or vendor-specific tools. API concept can also be visualized with a

simple diagram notation (see Figure 1.5 below). Typical representatives of the API are as follows:

•	 SaaS products’ interfaces, e.g. PandaDoc API (https://developers.pandadoc.com/

reference/about), or OpenAI LLM API (https://platform.openai.com/docs/api-

reference)

•	 Cloud management APIs; e.g. AWS (https://docs.aws.amazon.com/cloudcontrolapi/

latest/APIReference/Welcome.html), or Azure (https://learn.microsoft.com/en-us/

rest/api/azure/), or (https://cloud.google.com/service-infrastructure/docs/

service-management/reference/rest)

•	 Webhooks, like Zapier (https://zapier.com/blog/what-are-webhooks/)

•	 Internal/proprietary messaging-based events and commands schema registries that can

be based on Confluent or Redpanda (https://docs.redpanda.com/current/manage/

schema-reg/schema-reg-overview/)

Figure 1.5: Concept-level diagram of API

https://developers.pandadoc.com/reference/about
https://developers.pandadoc.com/reference/about
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://docs.aws.amazon.com/cloudcontrolapi/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudcontrolapi/latest/APIReference/Welcome.html
https://learn.microsoft.com/en-us/rest/api/azure/
https://learn.microsoft.com/en-us/rest/api/azure/
https://cloud.google.com/service-infrastructure/docs/service-management/reference/rest
https://cloud.google.com/service-infrastructure/docs/service-management/reference/rest
https://zapier.com/blog/what-are-webhooks/
https://docs.redpanda.com/current/manage/schema-reg/schema-reg-overview/
https://docs.redpanda.com/current/manage/schema-reg/schema-reg-overview/

Introduction to Application Development Frameworks12

The diagram helps to see that the API purpose is to provide access to exposed “black box” functions.

Library
The next one to review is a software library as a collection of pre-written code or routines that de-

velopers can use to perform specific tasks or functions within their software applications.

Sometimes developers see any software library as a framework, but the purpose of the library is

completely different – it focuses on runtime/operation concerns by implementing a common part

of the system, like hardware I/O operations, network protocol, authorization sequence, ranking

algorithm, IoT standard, etc. It is also common to have a library to transform a low-level API into

a more developer-friendly form by adding enumerables, constants, and conditional logic over a

binary code and method signatures of plain API. A Library usually operates as a gray box, which

means that software developers can see its internal implementation, but it is rarely necessary. In

some cases, libraries can come in binary format, which makes them black boxes.

Terminology across the industry is not always consistent, we can find other synonyms for the

term “software library”:

•	 Package; usually means one or multiple software libraries that share the same license

and they can be distributed as a single unit.

•	 Module; usually means a built-in software library, distributed with the program.

•	 Extension (aka add-on or plug-in); usually means a software library that follows specific

program interface allowing external developers to modify original program behavior

without changing any code in the original system.

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 1 13

Another important consideration is control flow. For a software library, it is common for devel-

opers to have full control over the library functions – so developers are responsible for invoking

the library.

Writing software libraries is one of the most common tasks in the industry; many senior developers

have experience of creating libs for internal company purposes, or contributing to open-source

libs, or at least have them as a part of their pet projects.

Often, a software library evolves into an SDK or a framework after multiple iterations of improve-

ments. And we definitely need to build libraries as part of the ADF development.

To understand the idea of software library better, we can use real examples:

•	 Algorithm libraries like math (https://en.wikipedia.org/wiki/List_of_numerical_
libraries), or 3D (https://en.wikipedia.org/wiki/List_of_3D_graphics_
libraries), or ML (https://en.wikipedia.org/wiki/Category:Python_

(programming_language)_scientific_libraries)

•	 Hardware abstraction libraries like HAL (https://infineon.github.io/psoc6hal/html/

index.html), or device drivers (https://en.wikipedia.org/wiki/Device_driver)

•	 Standard-compliant implementations like OpenAuth (https://openid.net/developers/

certified-openid-connect-implementations/)

•	 Programming helpers like Boost (https://www.boost.org/) or Requests.py (https://

github.com/psf/requests) that provide developers with a pre-written code for HTTP

requests lifecycle syntaxis helper.

•	 Any proprietary pluggable reusable code

Figure 1.6: Concept-level diagram of API and Library

https://en.wikipedia.org/wiki/List_of_numerical_libraries), or 3D (https://en.wikipedia.org/wiki/List_of_3D_graphics_libraries), or ML (https://en.wikipedia.org/wiki/Category:Python_(programming_language)_scientific_libraries
https://en.wikipedia.org/wiki/List_of_numerical_libraries), or 3D (https://en.wikipedia.org/wiki/List_of_3D_graphics_libraries), or ML (https://en.wikipedia.org/wiki/Category:Python_(programming_language)_scientific_libraries
https://en.wikipedia.org/wiki/List_of_numerical_libraries), or 3D (https://en.wikipedia.org/wiki/List_of_3D_graphics_libraries), or ML (https://en.wikipedia.org/wiki/Category:Python_(programming_language)_scientific_libraries
https://en.wikipedia.org/wiki/List_of_numerical_libraries), or 3D (https://en.wikipedia.org/wiki/List_of_3D_graphics_libraries), or ML (https://en.wikipedia.org/wiki/Category:Python_(programming_language)_scientific_libraries
https://infineon.github.io/psoc6hal/html/index.html
https://infineon.github.io/psoc6hal/html/index.html
https://en.wikipedia.org/wiki/Device_driver
https://openid.net/developers/certified-openid-connect-implementations/
https://openid.net/developers/certified-openid-connect-implementations/
https://www.boost.org/
https://github.com/psf/requests
https://github.com/psf/requests

Introduction to Application Development Frameworks14

The diagram suggests that Library can serve as a pre-implemented tool to integrate an API to the

application; but basically, it can provide any pre-implemented code for reuse.

Software Development Kit
Similar functions can be also performed by Software Development Kits (SDKs) but they usually

include much more than just a software Libraries; there is a list of possible SDK internals:

•	 Libraries.

•	 Tracing and Debugging tools.

•	 Documentation.

•	 Integrated development environments (IDEs)

•	 Tests.

•	 Plug-ins.

•	 Application programming interfaces (APIs)

•	 Sample code.

SDKs span both design-time (organizational) and runtime/operations (product) concerns but

still with focus on a runtime. SDKs are also platform– or vendor-specific, they are developed by

API or Platform vendors to improve their products adoption – see Android SDK created by Google

(Alphabet) and Windows ASDK developed by Microsoft.

Sometimes bigger SDKs can be designed to include frameworks (like Apple SDK), but we can also

see the opposite case, where an SDK is designed as an element of the framework. The following

are examples of cases where SDKs are subsystems of ADFs in the list below:

•	 Operator SDK is part of the Operator Framework: https://sdk.operatorframework.io/

•	 SDKs as a developer-friendly lib wrappers for particular framework, like Treblle provides

multiple SDKs including one for a Django framework: https://github.com/Treblle/

treblle-python

•	 SDKs have the same control flow as libraries have: the developer is responsible for invok-

ing an SDK, while in the case of frameworks, we usually have the opposite control flow:

the framework is responsible for invoking developer’s code. There is no exception if the

framework is part of an SDK: the framework takes ownership over the control flow.

https://sdk.operatorframework.io/
https://github.com/Treblle/treblle-python
https://github.com/Treblle/treblle-python

Chapter 1 15

Figure 1.7: Concept diagram of API, Library, and SDK

The diagram above depicts the SDK as a super-entity for a library.

Framework
Let’s elaborate on our definition here:

A framework is a collection of pre-written code and tools that provides a structured approach to building

applications. It simplifies development by enforcing architectural patterns: frameworks always dictate an

execution flow, and stipulate specific way to structure your code, promoting maintainability, testability,

low coupling, and reusability.

Of course, frameworks provide more than that, there are some examples below:

•	 Hide low-level complexity behind a higher-level abstraction;

•	 Promote faster development by providing pre-built binary/packaged components and

functionalities;

But those additional benefits cannot be attributed exclusively to frameworks – libraries or SDKs

both have the same value propositions.

The following are the Key aspects of this definition based on usage scenarios and key attributes:

•	 “Framework as abstraction” conceals repetitive code and low-level details by applying

software libraries, acting as a higher-level interface. This allows developers to work with

core functionalities without getting bogged down in implementation specifics. However,

it usually gives an option of direct communication with levels under even if it is unneces-

sarily for overwhelming majority of scenarios; in brief, any framework has one or multiple

libraries coming as a built-in option or pluggable 3rd-parties.

Introduction to Application Development Frameworks16

•	 “Frameworks as tooling” prioritize simplifying the development process by providing

pre-built components, streamlined workflows, and reduced boilerplate code. Their pri-

mary focus is on accelerating development, while runtime considerations (like operations,

maintenance, portability, performance) are a secondary benefit.

•	 “Framework as architectural constraint” establishes a blueprint for system architecture.

It dictates core components, their interactions, and overall structure, influencing key

design decisions for developers working within the framework’s constraints.

And finally, the relations between a frameworks and APIs, libraries and SDKs are usually follow

the common pattern: ADF streamlines the software development flow for the organization, gov-

erns the control flow by invoking a custom code made by software developer, having libraries as

a proxy to access external subsystem APIs, and allowing to plug in a third-party libraries or SDKs

to handle specific integrations.

Figure 1.8: Concept diagram of ADF, SDK, Library, and API

There is an extended classification of the Application Development Frameworks:

•	 Web frameworks like Django, Node.js, Java Play, Ruby-on-Rails, etc

•	 Enterprise frameworks like Java Spring, Oracle ADF

•	 Low-code frameworks (https://github.com/topics/low-code-framework) like Flutter,

OpenBlocks, Appsmith

https://github.com/topics/low-code-framework

Chapter 1 17

•	 AI/ML frameworks like TensorFlow, Keras, Apache MXNet

•	 Gamedev frameworks like Unity, UnrealEngine

•	 Mobile frameworks like React Native, Xamarin, Apache Cordova

•	 Microservice frameworks like GoMicro, Spring Boot, Molecular

•	 Test automation frameworks like Selenium, Appium, WebdriverIO

•	 Desktop OS frameworks like MFC, OS X framework, KDE framework

•	 Utility frameworks like Python Celery, ActiveTask,

•	 Custom frameworks – proprietary ones build for internal use, usually applying ADF format for

a domain objects and rules

•	 As Frameworks are our focus area, we add more detailed specification for three ADFs to

better highlight their commonalities.

The first one to analyze is Django:

•	 It employes numerous libraries in pluggable way: see https://djangopackages.org/

•	 It focuses on design-time aspects: “encourages rapid development and clean, pragmatic

design” (citation from official Django web site: https://www.djangoproject.com/)

•	 It is responsible for a control flow – developers don’t need to invoke Django code but to

follow a Django project structure to get their code invoked in a right moment;

•	 It enforces multiple architecture patterns (MVC / MVT as a model-view-template, ORM

as object-relational mapping, extendable middleware-based request processing pipeline,

class-based views, etc)

•	 It is vendor- and platform-neutral so it can be used on any cloud platform or a virtual

machine that can interpret Python programming language;

•	 It is a “gray box” software that can be redistributed as a package (see https://code.

djangoproject.com/wiki/Distributions) but it also has its source code published

in a public GitHub repository under the BSD-3 OSS license (see https://github.com/

django/django)

The second one is Node.js (https://nodejs.org), the most popular web full-stack framework

based on the JavaScript programming language:

•	 It has number of standard built-in libraries listed in official documentation (https://

nodejs.org/docs/latest-v12.x/api/) and hundreds of pluggable external libraries

like listed here: https://github.com/sindresorhus/awesome-nodejs

https://djangopackages.org/
https://www.djangoproject.com/
https://code.djangoproject.com/wiki/Distributions
https://code.djangoproject.com/wiki/Distributions
https://github.com/django/django
https://github.com/django/django
https://nodejs.org
https://nodejs.org/docs/latest-v12.x/api/
https://nodejs.org/docs/latest-v12.x/api/
https://github.com/sindresorhus/awesome-nodejs

Introduction to Application Development Frameworks18

•	 Org design-time focus is clearly emphasized as a key success factor of this framework; see

citation of the Node.js creator: “So for kind of technical reasons, adding a server onto JavaS-

cript worked really well and people who were programming front end websites were able to take

those same skills and with just a small amount of additional knowledge were able to program

pretty nice web servers that could do long polling or other kinds of real time interactions. And

I think there’s just a large base of JavaScript users out there, naturally, it being the language of

the web, and so there was a lot of people who were able to take their skills and add on Node to

that and suddenly become full stack developers.” (https://the-stack-overflow-podcast.
simplecast.com/episodes/why-the-creator-of-nodejs-created-a-new-javascript-

runtime/transcript)

•	 It is responsible for the control flow

•	 It enforces architecture patterns like event-driven, microservices, API-first etc

•	 It is vendor- and platform-neutral

•	 It is a “gray box” open-source software

And the final one is React (https://react.dev/) is a modern web front-end framework based

on JavaScript language:

•	 Dozens of libraries like here: https://www.reactlibraries.com/

search?qType=libraries&q=*

•	 Design-time focus: most of public sources mention developer-oriented benefits as a key

advantage of the framework; this list includes declarative syntaxis, reusable components,

community support, detailed documentation, etc

•	 Control flow management based on a virtual DOM concept is the core of the framework

•	 React’s intrinsic architecture patterns include event-driven (hooks), container-based

decorators, data repository (provider), etc

•	 It is vendor- and platform-neutral**

•	 It is a “gray box” open-source software

As we can see, most ADFs follow the same model which we will explore in more detail in Chapter 3.

Platform
And the final concept to review here is a Platform. The main differentiator of a Platform, in com-

parison with all the others: APIs, libraries, SDKs and frameworks, is its hosted server-side exe-

cution runtime. But it is important to understand that the runtime concern is a “bonus value”

here because the fundamental benefits of Platforms are still organizational design-time toolings.

https://the-stack-overflow-podcast.simplecast.com/episodes/why-the-creator-of-nodejs-created-a-new-javascript-runtime/transcript
https://the-stack-overflow-podcast.simplecast.com/episodes/why-the-creator-of-nodejs-created-a-new-javascript-runtime/transcript
https://the-stack-overflow-podcast.simplecast.com/episodes/why-the-creator-of-nodejs-created-a-new-javascript-runtime/transcript
https://react.dev/
https://www.reactlibraries.com/search?qType=libraries&q=*
https://www.reactlibraries.com/search?qType=libraries&q=*

Chapter 1 19

Platforms usually combine that hosted execution backend with APIs, libraries, and SDKs; and

it is common for modern Platforms to provide developers with more advanced tooling like dev

portals, resource management console and UI, cloud IDE, infrastructure-as-a-code definitions

support and many other org productivity boosters. However, platforms rarely include application

development frameworks and vice versa. We still can see frameworks being part of the platform

(like AWS Well-Architected Framework is part of AWS platform value proposition, and Microsoft

also has the same one: https://learn.microsoft.com/en-us/azure/well-architected/), but

these are not ADFs but architecture design frameworks (set of values, viewpoints, blueprints and

patterns for cloud-native applications).

Typical taxonomy with examples of the Platforms is the following:

•	 Cloud platforms like AWS, MS Azure or GCP

•	 Messaging platforms like Confluent Kafka or Redpanda

•	 Task execution platforms like Temporal.io

•	 Robotic process automation (RPA) platforms like WorkFusion or UIPath

•	 Game Platforms like https://heroiclabs.com/heroic-cloud/

•	 Dev platforms like Split.io, Firebase, Launchdarkly

Figure 1.9: Concept diagram of Platform, Framework, SDK, Library, and API

https://learn.microsoft.com/en-us/azure/well-architected/
 https://heroiclabs.com/heroic-cloud/

Introduction to Application Development Frameworks20

•	 Platforms are the most complete and mature kind of reusable engineering elements; how-

ever, their value comes with a high cost of ownership – this means that only large-scale

companies can afford to build and operate an internal software development platform.

Please do not confuse internal SDP with commercial PaaS (platform as a service) – we

have many examples that successful PaaS can be created and operated with relatively

small investment.

Domain Specific Language
Here it is, the bonus addition to the chapter. A Domain Specific Language (DSL) is a “language”

with a higher level of abstraction optimized for a specific class of problems. A DSL uses the con-

cepts and rules from the field or domain.

In terms of architecture abstractions, extensibility, and control flow, DSL is very similar to ADF –

they both imply certain design patterns, employ libraries for extensibility and portability purposes,

and invoke necessary code in the right time, defined by DSL creators.

The difference is the level of freedom for software product developers to code the DSL execution.

We may consider DSL a “next level” framework suitable for cases when we want to achieve a high

grade of standardization at a high level of abstraction.

Typical simplified taxonomy of the DSLs is the following:

•	 Workflow/BPMN like Camunda, Oracle BPMS, Nikku

•	 Rules like Drools

•	 Infra like Terraform

•	 Development like Gradle

 Note

Please note that DSL is not a programming language but rather a “formal domain

description” language. In most cases, DSLs implementations are closer to executable

configuration in JSON, YAML, XML or similar formats.

Chapter 1 21

Figure 1.10: Concept diagram with DSL, Platform, Framework, SDK, Library, and API

The diagram demonstrates a DSL primary use case of extending a Framework with limited pre-

defined capabilities.

In this section we focused on key differentiators of Frameworks in comparison with other kinds

of “engineering building blocks”. Now we can concentrate on the most important aspects of

Frameworks, including the ones we further discuss in the next chapters.

Differentiating ADF and other Types of Frameworks
There are even more sources of confusion: we have Frameworks that could be used in the process

of developing software products, but these Frameworks are not ADFs!

In the realm of software development, framework is a broad term encompassing various tools

that structure and streamline different aspects of the process. We’ve established that Application

Development Frameworks (ADFs) directly assist with coding. Let’s delve deeper into two other

crucial categories: Architecture Frameworks and Software Delivery Frameworks.

Introduction to Application Development Frameworks22

One of such kind of Framework is Architecture Frameworks such as “4+1 View”, TOGAF, Zachman,

SABSA, and DoDAF.

Another kind is Software Delivery Frameworks such as Scaled Agile Framework (SAFe), Large

Scale Scrum (LeSS), and Disciplined Agile Delivery (DAD).

Architecture Frameworks
These frameworks provide a structured approach to designing the overall architecture of a soft-

ware system. Think of them as organizational architecture design process blueprints or roadmaps

that define the foundation upon which your application will be built.

Here’s a breakdown of Architecture Frameworks’ types:

Enterprise Architecture Frameworks (EAFs): Focuses on the high-level structure of an entire

organization’s IT infrastructure, including software applications, data, and hardware. Examples:

TOGAF, Zachman Framework.

Software Architecture Frameworks (SAFs): Specializes in designing the internal structure of a

single software application. Examples: 4+1 View Model, C4 Model.

The following are some of the benefits of adopting such frameworks:

Consistency: Promotes a standardized approach to design, ensuring all components fit together

seamlessly.

Communication: Provide a common language for stakeholders (architects, developers, etc.) to

discuss system design.

Reduced Complexity: Break down complex systems into manageable components, simplifying

design and development.

The following are some of the popular examples of the architecture frameworks:

•	 TOGAF (The Open Group Architecture Framework): A widely used EAF known for its

comprehensive approach to enterprise architecture.

•	 Zachman Framework: Another EAF, offering a framework for classifying architectural

information across different viewpoints (e.g., business, data, application).

•	 4+1 View Model: A SAF focusing on five architectural viewpoints (system, application,

deployment, container, and code) for designing software applications.

Architecture Frameworks can be very useful, but they are completely out of scope of this book.

Chapter 1 23

Software Delivery Frameworks
These frameworks focus on streamlining the entire software development and delivery process,

particularly for large-scale or complex projects. They don’t deal with the specifics of coding or

designing the application itself, but rather how to efficiently manage the development lifecycle.

Here’s a closer look at Software Delivery Frameworks:

Core Principles: Emphasize iterative development, continuous integration and continuous de-

livery (CI/CD), and agile methodologies.

The following are some of the benefits:

•	 Improved Efficiency: Streamlines workflows and processes to deliver software faster

and with fewer errors.

•	 Enhanced Communication: Fosters collaboration between development teams, product

managers, and stakeholders.

•	 Increased Adaptability: Enables teams to respond to changing requirements and market

needs more effectively.

The following are some of the popular examples:

•	 Scaled Agile Framework (SAFe): A popular framework for scaling agile methodologies

to large enterprises.

•	 Large Scale Scrum (LeSS): An adaptation of the Scrum framework designed for large

teams working on complex projects.

•	 Disciplined Agile Delivery (DAD): A framework that integrates various agile practices

with other project management methodologies.

These categories provide a glimpse into the diverse landscape of frameworks beyond ADFs. Ar-

chitecture Frameworks ensure a well-designed foundation for your software system, while Soft-

ware Delivery Frameworks guide the overall development journey with efficiency and agility. By

understanding and leveraging these frameworks, you can build robust and successful software

applications.

But as we decided to focus on ADF, we need to pay special attention to a Software Development

Lifecycle topic as it covers the key value of using application development frameworks.

Introduction to Application Development Frameworks24

Software Development Lifecycle (SDLC) and Flow
To better understand Application Development Frameworks, we need first to understand key

scenarios of ADF adoption.

To set up a context, we need to differentiate the design-time and operations (runtime) aspects

of the software product development. It is important to note that the Software Development

Lifecycle (SDLC) can be used as a “blueprint” for software product development iteration. Visual

diagram of SDLC can help us better understand this aspect:

Figure 1.11: Spiral SDLC model is one of the most advanced SDLC models for software de-
velopment: image credits to https://www.tutorialspoint.com/sdlc/sdlc_spiral_model.htm

Chapter 1 25

We should always assume a repeatable iterative nature of the software product development

process not because “agile” is our current state-of-the-art delivery methodology; every lean or

efficient delivery approach relies on feedback loops to enable continuous improvement.

While ADF can be defined from both design-time and operations (runtime) perspectives, its

primary value is always in design-time and SDLC. We can impact routines as repeatable and re-

producible tasks. That’s how it is different from software libraries or APIs that can be employed

for a one-time task that might never be repeated again (e.g. library that provides integration to

specialized hardware or vendor-locked API that can be used in multiple places in source code,

but the use of a library is not about repeatable part of SDLC task).

In systems engineering terminology we can declare that SDLC is a “using system” (or a super-

system) for ADF, and ADF is a “subsystem” of SDLC. This implies not only the fact that ADF is

literally part of SDLC, but also enables the following mental model:

•	 ADF value, success criteria, and metrics are targeting SDLC improvements

•	 ADF stakeholders’ roles are SDLC participants

•	 Key ADF architecture viewpoints are defined in SDLC

In addition to SDLC concept, which is focused on engineering and instrumenting the develop-

ment process, we can apply a “Flow” term to emphasize the systemic aspect of software product

development in terms of value throughput and delivery management.

Summary
An Application Development Framework is a software product “skeleton” that offers a funda-

mental structure for building applications within a specific environment. It acts as a reusable

foundation, supplying pre-defined functionalities and promoting code organization through

established conventions. This distinguishes it from other ways of reusing code in the form of an

SDK, library, or API. It also makes ADF a unique opportunity to streamline development by reduc-

ing repetitive coding efforts, decreasing cognitive load, and promoting architecture best practices.

 ADF and Flow

All abovementioned means that ADF becomes one of the most influencing ways

to optimize a Flow throughput and eliminate bottlenecks related to product and

process complexity.

Introduction to Application Development Frameworks26

With this knowledge, we can explore the next chapters to find a way to calculate ADF return

on investment, meet stakeholders’ expectations, and align the ADF roadmap with a common

maturity model.

Reference
To know more about the following, please visit the links.

•	 Vendor-specific hardware SDKs like Android Studio: https://developer.android.com/

studio

•	 Samsung TV SDK: https://developer.samsung.com/smarttv/develop/getting-

started/setting-up-sdk/installing-tv-sdk.html

•	 MS Xbox: https://en.wikipedia.org/wiki/Xbox_Development_Kit

•	 Product-specific SDKs like PandaDoc SDK: https://developers.pandadoc.com/reference/

sdk

•	 Hubspot SDK: https://developers.hubspot.com/docs/platform/ui-extensions-sdk

•	 GetStream: https://getstream.io/chat/sdk/ios/

•	 Platform SDKs like AWS: https://aws.amazon.com/chime/chime-sdk/ & https://aws.
amazon.com/sdk-for-net/

•	 Azure (https://github.com/Azure/azure-sdk), or GCP: https://cloud.google.com/sdk

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.samsung.com/smarttv/develop/getting-started/setting-up-sdk/installing-tv-sdk.html
https://developer.samsung.com/smarttv/develop/getting-started/setting-up-sdk/installing-tv-sdk.html
https://en.wikipedia.org/wiki/Xbox_Development_Kit
https://developers.pandadoc.com/reference/sdk
https://developers.pandadoc.com/reference/sdk
https://developers.hubspot.com/docs/platform/ui-extensions-sdk
https://getstream.io/chat/sdk/ios/
https://aws.amazon.com/chime/chime-sdk/ & https://aws.amazon.com/sdk-for-net/

https://aws.amazon.com/chime/chime-sdk/ & https://aws.amazon.com/sdk-for-net/

https://github.com/Azure/azure-sdk
https://cloud.google.com/sdk

http://packtpub.com/unlock

2
Strategizing ADF for Success

Every engineer intuitively understands the importance of Application Development Frameworks

(ADFs). From the perspective of an ADF builder, we would like to see our framework as part of

many popular software products and get positive feedback from experienced engineers. This

chapter aims to elaborate on ADF’s success through value creation. This chapter is also exciting

for the Technical Product Manager (TPM) role, as it can help manage stakeholders’ expectations

for a framework-building initiative.

We review preconditions and opportunities for building our own ADF. To become successful

with Application Development Frameworks, we must follow suitable Builder mental models and

understand their Consumer mental models. The chapter includes a section on the importance

of adopting the Open-Source Software development paradigm even if you build proprietary or

commercial ADF. The chapter wraps up with a section on the ADF Maturity Model, allowing

readers to align their own organizational context with expected ADF benefits. We will cover the

following main topics:

•	 Introducing Systems Engineering as the Grounding Theory

•	 Establishing a Context for the Framework

•	 Defining ADF Success Factors

•	 Exploring a software development lifecycle model

•	 Estimating success metrics and ROI

•	 Shift towards Open-Source Software (OSS) paradigm

So, let’s examine why you might be interested in building your own application development

framework and why others might be interested in using it.

Strategizing ADF for Success28

Introducing Systems Engineering as the grounding
theory
In the previous chapter, we emphasized the importance of considering various stakeholders’

expectations to succeed in developing an ADF.

This section provides a foundation for this chapter by explaining success from the perspective of

the Systems Engineering discipline. We use Systems Engineering (SE) as the grounding theory for

this chapter and reference it in many other ones because this discipline was explicitly designed to

support a successful systems delivery. According to the Systems Engineering Body of Knowledge

(SEBoK, https://sebokwiki.org/), “SE is a transdisciplinary approach and means to enable the

realization of successful systems. Successful systems must satisfy the needs of their customers,

users, and other stakeholders.”

While we won’t utilize the full-scale SE for framework modeling, we will leverage some core

principles of SE to enhance the structure and clarity of our ADF models and descriptions in this

book. For more comprehensive information, I recommend referring to the SEBoK and the re-

sources provided by the International Council on Systems Engineering (INCOSE), which offer

comprehensive guidelines and frameworks for addressing the operational environment in systems

engineering practices.

This chapter will focus on two concepts derived from systems engineering.

•	 Operations environment: This term refers to the conditions and factors under which

a system is anticipated to function. It encompasses both the physical and operational

contexts in which the system operates, including environmental conditions, user inter-

actions, and interactions with external systems or processes. Understanding and defining

the operations environment is crucial for establishing system requirements and ensuring

effective performance under real-world conditions.

In other words, the success conditions of the system come from its operations environment.

•	 Lifecycle: Another vital concept borrowed from systems engineering is the notion of the

lifecycle (in the software industry, it is called SDLC for software development lifecycle).

The concept refers to the stages a system undergoes from inception to retirement. Accord-

ing to SEBoK and INCOSE, the system lifecycle encompasses several vital phases: concept

definition, development, production, utilization, support, and retirement. As the book is

about the framework’s creation, we will discuss four initial phases: concept definition,

development, production, and utilization.

https://sebokwiki.org/

Chapter 2 29

More importantly, it does not focus on stages but instead on the lifecycle model, which

operates with methods of work that compose the software production flow.

The relation between SDLC and software product is enabling: we can say that SDLC enables

software product.

Let’s take what we can get from the first concept: exploring the ADF operations environment.

Establishing a Context for the framework
The first concept from the Systems Engineering that we want to use here is the operations envi-

ronment. In most cases, applying it to the development process is not valid due to the significant

difference between design-time and runtime. However, the framework case is an exception be-

cause the most essential part of the framework’s value is in design-time. More details will come

with the next chapter, but in brief, we have the following decomposition of ADF concerning

design-time and runtime focus:

•	 Runtime (Software Product operations)

•	 Libraries, plugins, and extensions

•	 Runtime tooling (like logging or performance counters)

•	 Design-time (SDLC operations)

•	 Control flow

•	 Architecture guardrails

•	 Testing tools

•	 SDLC tooling (like scaffolding, deployment, migrations, or linters)

We also mentioned this difference in Chapter 1 (see Figure 1.9 as a reference).

Figure 2.1: SDLC and ADF enable a software product

Strategizing ADF for Success30

So, for any ADF, we can define its primary operations environment as a production software

development project. It means that we literally operate (utilize, get value from using it) in the

process of working on a production software development project.

We have enough historical evidence that the most natural and evolutionary way to build a frame-

work is to extract it from an ongoing software development project. For reference, two top-tier

web frameworks are born from the real-world struggles and demands of building complex soft-

ware. Let’s dive deeper into the two examples using Django and ReactJS to understand how this

process works:

Django
•	 Problem: In 2003, developers at the Lawrence Journal-World newspaper (LJWorld) faced

the challenge of building and maintaining a dynamic news website under tight deadlines.

Traditional web development tools often led to repetitive code and difficulties in scaling.

•	 Solution: The developers turned to Python, a language known for its readability and rapid

development capabilities. They started extracting reusable components and functional-

ities from their ongoing website project to meet deadlines and ensure clean, maintainable

code. This code factoring gradually evolved into a more comprehensive framework – Django.

•	 Key Considerations: Django’s design was shaped by the specific needs of a news website:

handling content creation, user management (for journalists and editors), and efficient

content delivery. These practical constraints drove features like a built-in admin panel,

robust content management tools, and a templating system for dynamic page generation

– all core functionalities in Django today.

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 2 31

•	 Evolution to Open Source: Though LJWorld itself migrated to WordPress later, Django’s

open-source release in 2005 allowed other developers to leverage its strengths for various

web applications. Today, Django powers complex websites like Pinterest and Instagram,

demonstrating its adaptability beyond its original news media purpose.

ReactJS – building a better ads engine
•	 Problem: Between 2011 and 2013, Facebook developers faced challenges in managing

the complexity of their search functionality and the upcoming Facebook Ads platform.

Traditional DOM manipulation techniques were cumbersome and time-consuming.

•	 Solution: The Facebook engineering team created ReactJS as an internal tool to streamline

the development process. React’s core principle – a component-based architecture – made

building complex user interfaces (UIs) for features like ad creation and management

significantly faster and more efficient.

•	 Stakeholder Focus: The primary beneficiary of ReactJS in its initial stages was the Facebook

Ads team. The framework’s design catered to their specific needs for building dynamic

and interactive ad experiences.

•	 Beyond Facebook, Evolution to Open Source: The open-source release of ReactJS in

2013 allowed developers beyond Facebook to leverage its component-based approach.

Today, ReactJS is a dominant force in web development, powering interactive interfaces

for countless websites and applications.

These examples showcase how real-world projects can be breeding grounds for powerful frame-

works. The challenges faced by the developers (deadlines, complex UIs) translate into core func-

tionalities of the framework (Django’s content management, React’s component-based struc-

ture). These extracted frameworks become valuable tools for a broader developer community by

addressing specific needs and constraints.

There might be exceptions, but we used to see that real software product development is the best

source of ideas, requirements, and decisions for nearly every successful application development

framework

We can safely assume that the ADF can be built by the following steps:

1.	 Build a software product with a particular method of work (see Table 2.2).

2.	 Refactor and extract specific parts of the product to a framework.

3.	 Reuse the framework to build the following software products based on the same prin-

ciples in a similar technology area.

Strategizing ADF for Success32

The possible alternative to the evolutionary extraction of ADF from the software product is to build

the ADF by specification as we do any other software product. Unfortunately, this way of building

software has all inherited problems of any software built without a fast feedback loop: integration

and adoption. Creating ADF upfront is more expensive because achieving an acceptable value

outcome from the new framework always requires more than one iteration.

Django framework can be a good example of evolutionary build ADF while React initially was

closer to the “by specification” one. In most cases, deriving the ADF from already implemented

software is more pragmatic, unless your team has plenty of resources and time for experiments

with revolutionary tech. In this book, we recommend the evolutionary way to deliver an ADF by

extracting it from a software project.

Defining ADF success factors
Selecting the optimal application development framework (ADF) is a critical decision that lays

the groundwork for project success. While the technical merits are essential, a successful frame-

work adoption hinges on its ability to satisfy the diverse needs of various stakeholders within

the engineering organization. Let’s explore these considerations, keeping in mind the possibility

of developing your own custom ADF.

Engineering leaders (CTOs, Engineering Directors, Team
Leads)
This group of stakeholders is always looking for ways to improve team productivity on different

horizons: the team lead role prioritizes short-term improvements, the director-level leader role

needs a mid-term improvement strategy, and the VP/CTO-level roles are about long-term vision

and drivers. Top-level leaders also care about company brand, intellectual property, and vendor

relations.

•	 Reduced Complexity and Cognitive Load: Leaders prioritize frameworks that simplify

development. That can be achieved by hiding standardized interactions and dependencies

under the unified interfaces, allowing development teams to focus on business features

rather than technical scaffolding. Developing a custom ADF will enable you to tailor it

to your specific needs, potentially reducing cognitive load for your developers even more

in the long run.

Chapter 2 33

•	 Business Agility Support: Consider the trade-off between out-of-the-box functionality

and customization. While a feature-rich framework can accelerate development initially,

it might introduce complexity and a steeper learning curve. For example, we have had

to migrate an extensive SaaS system from a Django web framework to a custom one as

part of a monolith decomposition initiative to improve teams’ autonomy, and simplify

development process.

•	 Learning Curve and Team Productivity: Balance the framework’s learning curve with

your team’s existing skillset. Leverage existing knowledge whenever possible to minimize

retraining and maintain developer productivity. Open-source frameworks with large

communities and extensive learning resources can be advantageous in this regard. How-

ever, a custom ADF can be designed to seamlessly integrate with your team’s expertise,

further boosting productivity.

•	 Reduced Reliance on External Vendors: Developing your own framework frees you from

vendor lock-in and the potential constraints of third-party licensing models.

•	 Intellectual Property Ownership: A custom ADF can be considered intellectual property,

providing a competitive advantage.

•	 Development Relations and Technological Brand: A successfully adopted ADF could

be published as Open-Source Software (OSS) to improve technical brand visibility and

attract talents by offering a contribution opportunity.

Architects
Although an organization may not have a dedicated architect position, this role will, in any case,

be of great importance in the development of complex systems. You just need to understand

that fulfilling this role will fall on someone from the development team or a technical manager.

Therefore, we have a responsibility to consider the concerns of this role in any case.

•	 Architectural Alignment and Long-Term Maintainability: Ensure the framework’s ar-

chitectural patterns align with the organization’s established best practices. Consider the

long-term implications – will the framework facilitate clean, maintainable code as the

project evolves? Developing a custom ADF allows for complete control over the architec-

tural patterns, ensuring optimal alignment with your long-term vision.

•	 Technical Stack Integration and Security: The framework should seamlessly integrate

with your existing technology stack (databases, deployment tools) and comply with inter-

nal security regulations. While many popular frameworks offer good integration options,

a custom ADF can be designed to perfectly fit your unique technical environment and

address any specific security concerns.

Strategizing ADF for Success34

Developers
Beyond the learning curve, consider the overall developer experience. Look for frameworks that

offer clear documentation, intuitive APIs, and strong developer tooling support. This translates to

faster development cycles and increased developer satisfaction. A custom ADF, if well-designed

with developer experience in mind, can become a powerful tool that streamlines workflows and

boosts developer productivity.

 Quality Assurance (QA)
The framework should provide strong support for testing methodologies. This includes features

like unit testing frameworks, dependency injection, and clear separation of concerns. A custom

ADF can be designed with testability as a core principle, allowing for the creation of comprehen-

sive test suites and ensuring a high-quality application.

Product Managers and Business Analysts
These or similar roles are critically important to build connections between the system’s end users

and the development team to ensure software product success. Again, even if your organization

don’t have dedicated positions and titles like these, someone should definitely be concerned

about the following matters:

•	 Business Agility (Understanding Capabilities and Limitations): These stakeholders need

to be aware of the framework’s capabilities and limitations to make informed decisions. A

custom ADF offers complete control over the feature set, allowing you to tailor it to meet

specific business needs. However, business analysts should also consider the ongoing

maintenance effort required for a custom solution.

•	 Perfect Alignment with Business Needs: A custom solution can be tailored to address

your specific use cases and business requirements, potentially leading to a more efficient

and practical application.

In conclusion, we make a brief table of general ADF-related benefits and highlight advantages

that are only achievable with custom-built ADF:

Chapter 2 35

Possible Benefits 3rd-party or OSS ADF Custom ADF No ADF

No Benefits

Insufficient opportunities to reuse

(RoI < 1)

Common Benefits

Reduced (hidden) Complexity

Business Agility Support

Learning Curve

Team Productivity

Reduced Cognitive Load

Development Experience

Robust Testing Capabilities

Architectural Alignment

Technical Stack integration

Security

Only with Custom ADF

Technological Brand

Intellectual Property

Reduced Reliance on Ext Vendors

Full Alignment with Business Needs

Table 2.1: External ADF benefits in comparison with a custom-built ADF; please note that the
comparison is made based on authors’ personal experience and may not cover all edge cases

Please note that custom-built ADF can achieve better outcomes in areas like architectural

alignment, technical stack integration, and especially security because it allows complete control

over the ADF structure and dependencies.

Strategizing ADF for Success36

However, creating and maintaining a custom ADF requires significant investment in time and

resources. It is vital to carefully weigh the benefits against the ongoing development and mainte-

nance costs. Please see the following sections for a detailed explanation of the Return on Invest-

ment (RoI) metric, which provides the best way to understand whether it is worth getting involved.

Choosing between a pre-built framework and a custom ADF requires careful consideration of your

team’s skillset, project requirements, long-term vision, and resource constraints. By understand-

ing the priorities of various stakeholders and the potential advantages and drawbacks of each

approach, you can make an informed decision that sets your project up for success.

Exploring Software Development Lifecycle models
Now, we will develop more specific and measurable ADF success criteria by leveraging the second

of the abovementioned SE concepts: the lifecycle.

Figure 2.2: Systems development life cycle. (2024, May 19). In Wikipedia. https://en.wikipedia.
org/wiki/Systems_development_life_cycle

While the canonical SDLC diagram presented in Figure 2.1 may not provide significant value for

our specific purposes, it is essential to recognize that the lifecycle model allows us to zoom in and

break down the Implementation stage into more granular levels by introducing methods of work.

This term is also known as the “ways of working” from the OMG Essence standard (https://www.

omg.org/spec/Essence/2.0/Beta1/PDF), proposed by Ivar Jacobson. In brief, it means just “the

tailored set of practices and tools used by a team to guide and support their work.”

https://www.omg.org/spec/Essence/2.0/Beta1/PDF
https://www.omg.org/spec/Essence/2.0/Beta1/PDF
https://en.wikipedia.org/wiki/Systems_development_life_cycle

Chapter 2 37

This flexibility helps us better understand the system development process. But what work meth-

ods do we want to highlight throughout the cycle in our model to extract the maximum possible

benefit for the analysis and design of the development framework?

The following are some of the examples:

•	 ReactJS (FE framework) addresses the work of adding UI components and reusing them

in a web application;

•	 DRF (Django REST Framework) addresses the work of exposing REST API endpoints from

a web application;

•	 LangChain (AI/LLM framework) addresses the work of building AI agents and integrating

them into the processing pipeline;

•	 Django (web framework) is so mature that it addresses multiple types of work at once:

•	 adding new web pages to a web application;

•	 adding data models;

•	 adding middleware processors;

We cannot emphasize more that ADF is a design-time-focused tooling, and its primary value is

always in making engineering organization better (more productive, making better quality work),

and only secondary effect is about a runtime (software product) itself.

Thus, our first step is to extract the development-centric process with the best potential ROI for

extraction as a new ADF. We will use one of the proprietary frameworks we made as a reference;

here, we add some context.

As part of the platforming initiative in a B2B SaaS software product, we created the Extensions

Framework. We analyzed the flow of adding and managing custom-built micro-front-ends (mi-

croFEs), aka Extensions, to our in-application rich content editor.

 Important note

Application Development Framework always addresses a method of work that is re-

peatable, technologically advanced, and requires significant manual work.

Strategizing ADF for Success38

Regarding the lifecycle model, we addressed the add and manage microFEs to the host application

method of work. We already had eight extensions built into the host page front-end code, but we

anticipated having at least ten more extensions soon. Given our high performance and low-cou-

pling requirements, we knew how difficult it was to add such extensions previously. Overall, our

primary drivers were:

•	 Architecture decoupling of Extension from host to enable proper engineering ownership

•	 Developers’ experience of adding and managing Extensions

•	 Business agility, as an unblocked opportunity to add 3rd-part or OSS Extensions in the

future

•	 Improved testability for any specific Extension independently

So, after defining a method of work that our ADF will address, we can derive a technical process

that needs to be focused on the product side (in runtime).

For example, some well-known frameworks focus on the following technical processes:

•	 ReactJS (FE framework) focuses on the technical process of injecting and rendering UI

components in a web application;

•	 DRF (Django REST Framework) focuses on the technical process of executing requests to

exposed REST API endpoints;

•	 LangChain (AI/LLM framework) focuses on the technical process of invoking AI agents

in the processing pipeline;

•	 Django (web framework) is so mature that it focuses on multiple technical processes at

once:

•	 rendering a web page;

•	 connecting and performing 2-way sync of data models;

•	 invoking a middleware processor; etc.

As you can see, this technical runtime process is a projection of the same entity our lifecycle

method addresses. To model any ADF, we need to model both organizational and product parts

of ADF together as value factor and cost factor: the first one demonstrates the benefits of using

ADF as a difference before and after ADF adoption, and the former one is the cost of implementing

ADF scope. In our example, the Extensions ADF value is a decrease in the effort and complexity

of adding and managing Extensions. At the same time, ADF cost is the efforts and support of

all the components required to operate Extensions in a production environment. Please note

Chapter 2 39

that the total value is multiplied by the estimated number of Extension-related features in our

product roadmap:

𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴  =  𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⋅ (𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  −  𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)(𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  +  𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

Here:

•	 NFeatures is the estimated number of times we can apply our target method of work during

feature development

•	 EBefore is estimated efforts (could be measured in worker-hours for a minor effort, or team-

sprints for a more significant effort) required to apply our target method of work before

the ADF adoption

•	 EAfter is the estimated efforts required to apply our target method of work with the help of

the new ADF

•	 EADF is estimated efforts required to build the new ADF

•	 EAdopt is estimated efforts required to onboard engineering teams to the changes in target

method of work, including migrating existing parts of the software product if necessary

This formula only considers Efforts as a significant input parameter while we have multiple other

success factors (see Table 2.1). We suggest treating all other ADF benefits as side benefits while

using efforts as the only primary ROI-defining factor. This also means that it might be feasible to

accept investments in ADF development even with ROI < 1 when side benefits become crucial for

engineering strategy, e.g., it helps to decouple a monolithic application to domain microservice.

Estimating success metrics and ROI
Now, we are close to the ability to evaluate the return on investment for creating our framework.

A small final step is left: we need to know all input variables of the formula above.

The first one, NFeatures, is probably the simplest variable, but we cannot always know for sure how

many times we will need to reuse the framework in the future. If you are lucky enough to have

the exact number, it better be more than five: this is an empirical magic number, meaning we

have never seen successful ADF development initiatives with less than five cases of reuse. The

main purpose of this magic number is to give you a ballpark understanding even before you can

calculate a RoI forecast. In the case of the UI Extensions framework, we had an estimate of 10+,

which means that ten is the pessimistic value.

Strategizing ADF for Success40

The second one, EBefore, is usually already available for you in cases when you extract ADF from the

software project. It is always better to have more than one measurement based on different teams’

performance, but its value has the highest confidence anyway. Suppose you build a framework

as a product without the donor project. In that case, you can try getting the estimate from your

potential customers – development teams who have experience with similar tasks. However, it is

essential not to limit the forecast by implementation efforts only: sometimes, ownership efforts

of already implemented feature is comparable with the implementation efforts. In the case of

UI Extensions Framework, we estimated the cost by the sum of the feature team effort to build

the Extension, the domain owners team to guide and review the Extension integration, and the

average efforts required to update and troubleshoot the Extension.

The following two, EAfter and EADF, are impossible to get empirically because they require your

ADF to be already built and integrated into the software delivery flow. We must use predictive

modeling techniques to measure these variables, and we put the example of these models in this

section below.

And the final one, EAdopt, is the one that is consistently underestimated. Here, we have a migration

effort that is usually non-linear due to excessive coupling and technical debt. Here, we have a cost

of educating the teams and collecting their feedback with all the necessary adjustments. In total,

it might be a classic example of the x3 rule invented by developers who need to give an estimate for

performing a task in an unknown area. Just multiply your estimate by three and be on the safe side.

Getting back to our forecasted variables, EffortsAFTER and EffortsADF DEV. For a more realistic esti-

mate, let’s apply the lifecycle modeling techniques to decompose the values into more granular

components. For the EAfter, we break down our “method of work” into smaller operations chunks.

For the EADF, we break down our target technological process related to the method of work. We

continue using the same UI Extensions framework as the reference here.

Chapter 2 41

Figure 2.3: “Method of work” breakdown, based on the original Wikipedia image https://
en.wikipedia.org/wiki/Systems_development_life_cycle

This diagram describes generalized operations that must be performed to use most ADFs, with

the outer layer containing expanded details about the referred ADF (UI Extensions framework).

Four upper operations are the source of the value of EAFTER. In comparison, we consider two bot-

tom operations unnecessary with the new ADF and can use them to improve the accuracy of the

value of the difference of EBefore – EAfter.

The visualization technique used here is not the most convenient way to build the model; in prac-

tice, we found a table representation more suitable for this kind of model. It is easier to extend

with additional metadata and can cover a broader part of the lifecycle without losing readability.

You can see the example built for the UI Extensions framework in Table 2.2 below:

Strategizing ADF for Success42

Work Method Operation EAFTER for PD Extensions

framework (hours)

ADF requirements

Bootstrap Create Extension

structure 4

Documentation (dev

guide), Extension

manifest template

Create MicroFE

container 2

Documentation (dev

guide), MicroFE

template

CI step for the

Extension

Registration

4

Documentation (dev

guide)

Implement

mandatory

interfaces

React UI component ? Domain-specific n/a

Domain controller

logic
? Domain-specific

n/a

Data access layer ? Domain-specific n/a

Implement

optional

extensions

Pre-/post-filter rules

4

Documentation (dev

guide), Extension Point

(host) rendering flow

Extension events

handlers 8

Documentation (dev

guide), Extension Point

(host) event triggers

Add “edge cases” Permissions
2

Declarative permissions

support in Ext manifest

Invalid state

transitions
4

Extensions state sync

with domain service

Distributed update

conflicts
? Domain-specific

n/a

Refactoring

0

Extension structure,

enumerations,

constants

Code

instrumentation

Internal/external

exceptions 4

Handle internal

exceptions, return

error codes

Circuit breakers
4

Remote service calls

wrapper

Chapter 2 43

Work Method Operation EAFTER for PD Extensions

framework (hours)

ADF requirements

Monitoring Logging 4 Integrated logger

Collect metrics

0

Default metrics

aggregator, default

dashboard

TOTAL ... 40

Table 2.2: The “Method of work” breakdown model is in table format

Table 2.2 provides a reference lifecycle reference model in table format. This first column contains

a generic structure suitable for almost any ADF (more details about this structure come in the fol-

lowing chapters). The structure from the first column is too generic for direct use for your ADF as

is, but you can adjust your ADF-specific breakdown that we have in the second column. The third

column contains estimated efforts related to the target method of work. The final fourth column has

notes associated with the ADF scope that we need to implement to support our current estimates.

It is evident that the lower the final value of the value of the efforts forecast, the more effective

our framework is. Also, you may notice that some estimates have a “Domain-specific” value. This

is done in those places where the effort estimate depends on the domain in which the logic of

expansion is realized. These estimates will not affect the final difference between EBefore – and EAfter.

Please note that this estimate (EAfter) should always come before the ADF estimate (EADF) to collect

additional, less obvious elements that need to be implemented in the ADF scope. Thus, our next

step will be to create a model for assessing the efforts required to develop a framework itself. We

will use a similar table format for this model as well. The main difference will be that to evaluate

the cost of creating ADF, and we must first produce an architectural design of the framework.

This means that the initial section of the table will address a preliminary technical design of the

framework. This also means that one of the columns of our table will contain modules of technical

architecture. More details on ADF architecture design and modular structure will come in further

 Exercise

We encourage you to try composing such a table for your framework. Not only will

this exercise help you more accurately predict your framework’s ROI, but it will also

make your value proposition more transparent to everyone.

Strategizing ADF for Success44

chapters; here, we use only minimal structure to enable the estimation process. The technical

architecture design specific to PD Extensions framework can be seen below in table format:

Lifecycle Phase Modeling outcome

Architecture

Design

Entities and Relations model

Extension Point (host)

Extension as a micro-front-end (microFE) app

App domain

Information flow model – render all Extensions flow

Host application load

Extension Point init

Extensions query to a back-end (BE) system

Pre-filter Extensions rules (BE)

Dynamically load Extensions

Post-filter Extensions rules on a front-end (FE)

Delegate Extensions rendering to their respective domains

Provides common client-side events (re-init, hide, show, etc.)

Components model (target state)

Extension Point loader (FE)

Extensions Catalog service (BE)

Extension loader (FE)

Events manager (FE)

Data persistence model (target state)

Extension state persistence is in Extension Service (BE, RDB)

Extension Point persistence is in the host application (config, FS)

Table 2.3: ADF Technical design outline

Chapter 2 45

Now, we are able to build a work breakdown for our reference ADF development; see Table 2.4

below:

Source of the scope Scope structure Efforts estimate

(team-sprints)

 “Method of work”

requirements support

Project structure

Extension Point code file

Extension Point config

Extension Manifest file

Extension registration CI step

Extensions server repository

Dependencies injection

Extension point config

Extension registration CI

Documentation

Development guide

1

Strategizing ADF for Success46

Source of the scope Scope structure Efforts estimate

(team-sprints)

Target technological flow

implementation

(render Extensions)

Input/output data formats

Extension manifest JSON serialize/

deserialize/validate

Extensions service API OpenAPI definitions

(Query, Register)

Objects interactions

Query extensions

Apply pre/post-filter rules

Register Extension

Load extension

Render Extension

State transition functions

Extension Point init/query/filter/render/re-

init

Data access layer

Register Extension

Update Extension state

3

Integrate the ADF with

the core product

Internal data sources

Entitlement service

Identity service

External file hosting services and CDN

1

“Add edge case” support Extension validation

microFE validation

Circuit breakers

1

Chapter 2 47

Source of the scope Scope structure Efforts estimate

(team-sprints)

Refactoring Invariants

Extension Points structure

Extension manifest structure

Extension states enum

Defaults (validators, status codes,

header values)

Extension points

Pre/post-filter rules

1

Code instrumentation,

Monitoring & Tracing

Extension flow Logging

Collect metrics (return code counts,

processing time)

Errors logging

Perform Health checks

1

TOTAL … 8

Table 2.4: ADF implementation work breakdown for the reference ADF (UI Extensions
Framework)

 Important note

The work breakdown structure, described in Table 2.4, can only be used for estimates.

It is not the implementation plan because we need an evolutionary approach for

extracting the ADF. To support the evolutionary case, we perform ADF development

as part of existing software product refactoring in an agile way with short iterations,

taking tasks in a suitable order according to ADF team priorities. At the same time,

the work breakdown still provides valid estimates of the total efforts that need to

be invested here.

Strategizing ADF for Success48

As you can see from the example tables, our formula takes the following values:

•	 NFeatures = 10 – as we mentioned, we expected at least ten new Extensions coming soon;

•	 EBefore = 3 – we know that we needed three team-sprints on average from our previous

experience of implementing Extensions without custom ADF;

•	 EAfter = 1 – from Table 2.2; please note that we converted 40 worker-hours to 1 team-sprint

to have consistent measurement units; planning and making estimations are not in scope

of this book, but we would suggest to avoid relying solely on expertise of a single engineer

but instead apply more advanced techniques like PERT analysis (https://en.wikipedia.

org/wiki/Program_evaluation_and_review_technique).

•	 EADF = 8 – from the Table 2.4;

•	 EAdopt = 4 – includes migration of 8 existing Extensions, getting feedback from product

teams, conducting learning sessions.

The final calculation of the ROI according to our formula can be found below:𝑅𝑅𝑅𝑅𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴  =  𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ⋅ (𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)(𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = 10 * (3 – 1) / (8 + 4) = 1.67

We can also revert the formula and find the minimal number of Extensions we need to add to the

product to break even (ROIADF should be equal or greater than 1):𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)(𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = (8 + 4) / (3 – 1) = 6

To summarize the reference case, we can say that the ROI appeared to have a value higher than one,

which means we have economic justification for building our application development framework.

In addition to the economic efficiency of the ADF, we achieved multiple non-substantial benefits,

like architecture guardrails, improved developers’ experience, and better testability.

Shift towards Open Source Software paradigm
We haven’t planned to open-source our reference ADF (UI Extensions framework) due to its very

specific purpose and tight integrations with internal subsystems like Entitlement management

and Identity management services. However, if we continue driving the framework towards its

ideal state, we will definitely take a step towards making it Open-Source Software. The motivation

behind this intention is not only making someone’s life better. Such a decision is also a very prag-

matic one due to the following potential benefits that we could achieve with the OSS approach.

https://en.wikipedia.org/wiki/Program_evaluation_and_review_technique)
https://en.wikipedia.org/wiki/Program_evaluation_and_review_technique)

Chapter 2 49

Increased innovation and collaboration
By opening up our framework to the broader developer community, we invite a diverse group of

talented individuals to contribute. This can lead to new features, bug fixes, and enhancements

that we might not have thought of internally. The collaborative nature of OSS often leads to more

innovative solutions and rapid development cycles.

Enhanced security
Open-source software benefits from the scrutiny of a global community. With more eyes on the

code, potential vulnerabilities can be identified and patched more quickly than in a closed-source

environment. This proactive approach to security can significantly reduce the risk of breaches and

other security incidents. Please note that you need proper security controls in place and treat a

feedback from open-source community as an additional and optional layer of security. However,

we wouldn’t recommend exposing a business-critical code to the OSS community: you likely won’t

accept a community contribution here so there are no benefits for you, but at the same time you

give away information that can be used against your interests. Fortunately, by its nature, ADF is

rarely business-critical but rather productivity-focused.

Cost efficiency
Developing and maintaining software can be expensive. By leveraging the contributions from the

open-source community, we can reduce our development costs. This includes savings on devel-

opment time, resources, and the potential reduction in licensing fees for third-party components

if open-source alternatives are adopted.

Improved quality and reliability
Open source projects often undergo rigorous peer review and testing from a wide range of users

and developers, employing a wide variety of environments and addressing a broader range of

use cases. This collective effort can lead to higher-quality code and more reliable software. It

also means that there is a chance that many potential bugs in your ADF can be found without

affecting your users.

Technological brand, community, and ecosystem building
Open-sourcing our framework can help build a strong community around it. This community can

provide support, create plugins, extensions, and integrations, and advocate for the framework.

A vibrant ecosystem can increase the framework’s adoption and make it the go-to solution in its

niche.

Strategizing ADF for Success50

Talent attraction and retention
Contributing to open-source projects can be a significant draw for top talent. Developers often

want to work on projects that are visible and impactful. By open-sourcing our framework, we

can attract skilled developers who are passionate about contributing to open-source projects and

retaining them by providing opportunities to work on innovative solutions.

Market positioning and reputation
Open-sourcing our framework can enhance our company’s reputation in the industry. It demon-

strates our commitment to transparency, collaboration, and the advancement of technology. This

can position us as leaders in our field and build trust with customers, partners, and the developer

community. In the case of startups, it also positively affects investor relations.

Please note that there is also a potential risk of damaging your reputation if the framework you

open-sourced is below community standards.

Interoperability and standards
Open-source projects often adhere to open standards, making ensuring interoperability with

other systems and platforms easier. This can increase the utility and flexibility of our framework,

making it more attractive to a broader audience.

Efficient technical problem resolution
When issues arise, the open-source community can be quick to respond with solutions. This col-

lective problem-solving approach can lead to faster resolution times compared to relying solely on

an internal team. It doesn’t mean the community can assist you in the incident response process

or find the root cause of downtime. It is more about finding long-term scalability bottlenecks,

resource consumption inefficiency, or other issues with your architecture.

Educational value
Open-source projects serve as valuable learning resources for developers. By making our frame-

work open source, we contribute to the education and skill development of the broader developer

community, fostering a culture of continuous learning and improvement. At the same time, your

newly hired developers can experience better onboarding by exploring your OSS ADF or even

becoming experts in your ADF far before being hired by your company.

Chapter 2 51

Regulatory and compliance benefits
Some industries and regions have regulations that favor or even mandate the use of open-source

software for its transparency and flexibility. Open-sourcing our framework can help us comply

with these requirements and gain a competitive edge in such markets.

In conclusion, transitioning our reference ADF towards an open-source model aligns with both

our altruistic and pragmatic goals. The multitude of benefits, ranging from innovation and se-

curity to cost efficiency and community building, make a compelling case for embracing the

open-source paradigm. This strategic shift can not only enhance the framework itself but also

solidify our standing in the industry as forward-thinking leaders committed to fostering an open,

collaborative, and innovative technological landscape.

Summary
By incorporating essential principles of Systems Engineering into our ADF development process,

we can significantly enhance our ability to meet stakeholder expectations and deliver success-

ful systems. Systems Engineering provides us with valuable concepts such as the operations

environment, system lifecycle, and lifecycle model. These concepts enable us to identify and

measure the value that ADF brings to the Software Development Life Cycle (SDLC), addressing

key stakeholders’ concerns effectively.

This chapter advocates for an evolutionary approach to creating a new ADF, aiming for optimal

Return on Investment (ROI) and smooth adoption. We explored both the tangible and intangible

benefits of building your own ADF, supported by a detailed ROI calculation formula based on a

reference case from the authors’ previous experience with the UI Extensions framework.

To ensure accuracy in our estimates, we proposed using two fundamental models: the “method

of work” and the “technological flow” models presented in table format. We also discussed the

“ideal state” for every ADF, which involves embracing the Open Source Software (OSS) paradigm.

By aligning with the OSS model, we can reap numerous benefits, including increased innovation

and collaboration, enhanced security, cost efficiency, improved quality and reliability, commu-

nity and ecosystem building, talent attraction and retention, market positioning, and reputation,

interoperability and standards, rapid problem resolution, educational value, and regulatory and

compliance advantages.

In conclusion, integrating Systems Engineering principles and adopting the OSS paradigm can

drive the development of a robust and valuable ADF, ensuring successful outcomes and stake-

holder satisfaction.

Strategizing ADF for Success52

In the next chapter, we get deeper into ADF structure patterns and maturity model to get more

suitable tools to deal with estimates, planning and architecture design work.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

3
Application Development
Framework Blueprint

Every successful Application Development Framework (ADF) follows specific logical patterns.

A blueprint is a detailed plan or guide that outlines these patterns, ensuring that developers can

build their Frameworks systematically and efficiently.

In the context of ADFs, a blueprint is an essential tool for several reasons. It provides a clear and

structured approach to Framework development, reducing the complexity and potential for errors.

By following a well-defined blueprint, developers can ensure consistency, maintainability, and

scalability in their applications.

This chapter introduces the ADF blueprint, a comprehensive guide that leverages the ADF Canvas

visualization tool. The ADF Canvas allows developers to visualize the Framework’s components

and their interactions, making it easier to understand and implement the necessary patterns.

We begin by exploring the model’s context, giving you a foundational understanding of the

Framework’s environment and requirements. Next, we introduce a maturity model that can be a

valuable supporting tool in defining the path to the ADF target state. The subsequent section pres-

ents examples of a completed Canvas, offering a concrete reference to help you grasp the model’s

structure, functionality, and maturity levels. Finally, we provide a step-by-step guide to the best

practices for filling out the Canvas, empowering you to create your own robust and efficient ADF.

By the end of this chapter, you will have a solid understanding of the ADF blueprint and be well

equipped to apply these principles to your development projects, leading to more successful and

sustainable outcomes.

Application Development Framework Blueprint54

In this chapter, we’re going to cover the following main topics:

•	 ADF structure patterns

•	 ADF maturity model

•	 ADF Canvas guide

ADF structure patterns
This is the final chapter of the book’s first part, and it aims to complete the theoretical foundation

of Framework building. In software engineering, a blueprint helps us avoid unnecessary efforts in

architecture design. It works as a checklist, preventing easy mistakes of unaccounted requirements

and missed elements. A blueprint gives a complete, ideal-world structure for any Framework,

allowing engineers to cherry-pick necessary elements from it according to their target maturity

level and available investments.

We will start by defining the ADF’s internal substructures one by one, starting with organiza-

tional flow patterns.

From the previous chapter, we know that the primary purpose of the ADF is to improve an engi-

neering organization’s productivity and performance by providing a standardized and simplified

way to perform one or multiple engineering operations, such as the following:

•	 Adding a web view to a web application (web Frameworks such as Django or Ruby on Rails)

•	 Adding a REST API endpoint to a backend (FastAPI)

•	 Adding an AI agent to an LLM-powered system (LangChain)

•	 Building a new extension/widget into a host application (such as proprietary UI Extensions

Framework that we will use as an example in further chapters)

So, the initial decision that ADF developers need to make is about the decoupling pattern, allowing

optimal control over the entity/object life cycle.

Entity/object definition
The flow always has a reference to the primary entity/object (or multiple objects in the case of a

complex Framework). In the list of previous examples, we have objects such as web page, REST

API endpoint, AI agent, and extension.

Chapter 3 55

The ADF expects the application developer to deliver a definition of this entity so that the imple-

mented product flow will perform all the intended steps.

Figure 3.1: Domain object definition structure

As shown in the diagram, both Framework Developer and Application Developer take care of

the same object, but on different levels of abstraction. The Framework cares about a whole class

of objects while the application focuses on object instances. This definition can be made in differ-

ent ways, depending on the complexity of the domain object and Framework maturity. It can be

either a simple object defined in the programming language or a complex hierarchical structure

defined by a manifesto in the configuration description language, such as YAML or JSON. A more

detailed explanation will be covered in Chapters 5 and 6.

An application developer could make an entity/object definition by using different methods and

techniques, including the following:

•	 Programmatically via inheritance

•	 Programmatically via implementing interface

•	 Declaratively via DSL

Adding a new entity to the system may be accompanied by additional validation and certain

actions to change the configuration. To ensure entity/object definition quality, schema-based

constraints can be applied by a Framework developer in a way available in a given programming

language and technical stack, such as the following:

•	 Throwing “not implemented” exceptions from the base class

•	 Declaring mandatory methods

•	 Declarative schema structure in the XSD or JSON format

After defining this entity/object, we expect the application developer to register it for execution

with the ADF control flow.

For more complex entities/objects, ADF developers can introduce a decoupled definition with

well-known architecture patterns as a guardrail. The following are the most popular patterns

that serve such a purpose.

Application Development Framework Blueprint56

Model-View-Controller
The Model-View-Controller (MVC) pattern allows the Framework user to define object data as a

Model, object representation as a View, and object behavior as a Controller. This kind of decoupled

object definition has improved testability, allows the use of layered architecture, and provides a

wide range of variations to support all possible use cases. It is primarily used in web and mobile

Frameworks; however, Model-View-Presenter can be more suitable in mobile-native projects.

You can learn more about MVC and its variations on the internet.

The Hierarchical Model-View-Controller (HMVC) pattern is an extension of the traditional

MVC pattern, designed to handle the complexities of large-scale applications. It introduces a

hierarchy of MVC triads, allowing each component to function independently within its own

MVC context. This pattern emerged to address the limitations of the traditional MVC architecture

when dealing with complex, modular applications. HMVC is supported by Frameworks such as

Kohana and CodeIgniter in PHP.

Model-View-Presenter
An alternative name for Model-View-Presenter (MVP) is Model-View-ViewModel (MVVM). It

is an advanced version of MVC, providing more granular logic and better abstraction between

Model and View. The main difference with MVC is a natively supported, bidirectional data binding,

provided by a ViewModel in MVVM, allowing to avoid potentially extensive code in a Controller

component. That leads to even better testability than in MVC, making it more suitable for larger,

enterprise-grade projects. Primarily used in application platforms that support rich client inter-

faces, such as WPF, Silverlight, Xamarin, and more recently, in web development Frameworks

such as Angular, MVVM excels in environments where the user interface (UI) is data-driven

and complex interactions need to be managed without excessive coupling between the UI and

its underlying data logic.

There is also MVVM-C, which is a variation of MVVM that adds a Coordinator to the mix. The

Coordinator is responsible for handling navigation between different screens or views within

the application. This pattern is useful for applications that have multiple screens or views that

need to be managed.

Model-View-Template
Model-View-Template (MVT) became popular due to the Python Django Framework. It is very

close to MVC, but the Controller part is almost entirely handled by the Framework itself, providing

an even simpler and more minimalistic way to define the UI for ADF users.

Chapter 3 57

Beyond widely used patterns such as MVC and MVVM, there are several other specialized ar-

chitectural patterns, such as Presentation-Abstraction-Control (PAC), View-Interactor-Pre-

senter-Entity-Router (VIPER), and FLUX. These patterns address specific needs in particular

domains, such as PAC for interactive systems, VIPER for iOS application development, and FLUX

for managing state in JavaScript applications.

Entity/object registration
This entity must be registered somehow in the Framework for subsequent use.

In an ideal scenario, adding a new entity to a Framework should be highly automated and re-

quire minimal user effort. The Framework’s designers should strive to encapsulate unnecessary

complexity within a simple, user-friendly interface. One typical example of such an interface is

inheritance, frequently used in Framework design across various programming languages. In

this approach, a base class manages all necessary actions for entity registration, along with any

supplementary operations.

 Registration pattern

The Registration pattern is a cornerstone of any Framework and, by extension, a

platform (as discussed in more detail later in this chapter). The core reason for its

significance lies in the fact that a Framework – or platform – governs the control flow

of an application. To integrate with this control flow, developers must register custom

application extensions, such as entities, plugins, or processors. This registration

process is essential for extending and customizing the application’s functionality

within the Framework’s predefined structure.

Note the vital difference between a Framework and a platform: the Registration

pattern in Frameworks occurs in design time and requires additional steps (com-

pile, build, and deploy) to start bringing value, while in platforms, there is usually a

runtime registration API, console interface, or UI that doesn’t require any additional

coding steps to work. As an example, the provisioning of a message schema to a

managed Kafka broker doesn’t require a platform to rebuild Kafka and reprovision

its instance.

Application Development Framework Blueprint58

However, inheritance is not the sole method for registering entities within a Framework. Alter-

natives include directly manipulating configuration files, registering entities via source code,

using an annotation/decorator, or placing an entity/object definition file within the appropriate

repository structure. This pattern extends the basic definition one.

Figure 3.2: Core entity/object registration

The registry is usually a black box to the application developer, so it is visualized in a diagram

as the Framework-side concept. Consider examples of implementation of this pattern in some

well-known Frameworks:

•	 Django (Python-based web ADF) handles multiple types of core entities:

•	 Define and register the app entity: Use the “create app” management command

•	 Define and register the view entity: Write a function in views.py with the HttpRequest

object as input and HttpResponse as output; register it by adding a route to urls.py

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 3 59

•	 Define and register the data model entity: Write a class in models.py; register it in the

control flow by referring to it in a view method

React.js (web component life cycle):

•	 Define the component by creating a class or a function that renders your component;

register it by importing the JS file with your component from your web application

•	 Proprietary Framework example: Content personalization Framework (adds web content

that should be rendered only for a specific user segment):

Define the content entity/object as an HTML snippet in a file in the repository

Adding and registering a new domain entity/object allows application developers to adapt a

Framework to their domain. However, to adjust a generic control flow provided by the Framework

to fit application requirements, application developers often need to adjust the control flow by

adding or changing Framework processors.

The same is true for a case when ADF developers apply a distributed definition via architectural

patterns such as MVC, MVVM/MVP, or MVT. We have separate registration for each aspect, pro-

vided by a base class or dependency injection mechanism.

Managing object processors
A domain object that has been added and registered in the Framework will then be used in the

control flow by the Framework itself. The Framework executes all necessary operations over the

object to achieve essential outcomes designed by the ADF developer; it might be a rendered web

application page, an AI agent ready to handle requests, a UI component, and so on. However, any

good ADF allows application developers to adjust the processing performed by the Framework

without editing the Framework’s core implementation. There are two major ways to make such

adjustments:

•	 Core flow modifications allow to change the critical path. Depending on the core flow

flexibility and Framework maturity, these kinds of modifications are usually made by

applying the Pipeline pattern with pluggable steps.

•	 As an alternative, the Pre/Post Processing pattern allows the definition of any custom

logic before and after the main processing. Some examples of core flow modifiers might

be custom serializers, tokenizers, data enrichment, dynamic validators, and so on.

Application Development Framework Blueprint60

One example of pre/post processing is the .NET MVC Framework, which provides an interface to

set custom handlers for pre- and post-events of the core entity life cycle.

The Pre/Post Processing pattern provides a simple interface for core flow adjustments.

Figure 3.3: Core flow adjustments with the Pre/Post Processing pattern

However, a more mature implementation can be delivered with a Processing Pipeline pattern,

allowing more control and granularity over the main flow (see Figure 3.4).

Chapter 3 61

Figure 3.4: Core flow adjustments with a Processing Pipeline pattern

The previous diagram demonstrates a separation of responsibilities between a Framework devel-

oper and an application developer. The pipeline itself, its default processors, and the config are

on the Framework side, while application-specific processors are on the application side. Here

are some examples of an adjustable core flow in existing Frameworks:

Django has middleware to manage the request processing flow:

•	 Define: Implement required interface methods, or better, use MiddlewareMixin as a base

class to have a schema of processing steps in your custom code

•	 Register: Add to a MIDDLEWARE setting in the settings.py file

Express.js (web Framework based on Node.js) uses a similar way to extend a request processing

pipeline:

•	 Define: Write a function with a predefined signature (req, res, or next)

•	 Register: Invoke app.use() with your middleware function as a parameter

Application Development Framework Blueprint62

Ruby on Rails:

•	 Define: Declare a class with a call method

•	 Register: Invoke config.middleware.insert with your middleware class as a parameter

Here, we also have the opportunity to apply the Data-Context-Interaction (DCI) pattern (see
https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-

oriented-programming for details). This pattern decouples the system behavior algorithm (the

flow) from the domain objects, opposite to the classic object-oriented programming (OOP)

paradigm.

Beyond registration, the Manage Object Processors pattern enables further customization of the

Framework’s control flow. Developers can modify or extend the core flow using techniques such

as the Pre/Post Processing pattern or the Processing Pipeline pattern. Additional adjustments by

functional plugins allow for more tailored application behavior, enhancing both user experience

(UX) and developer experience (DevX) without altering the core Framework implementation.

Extending by functional plugins
These plugins (also known as extensions) structures serve as core flow extensions, aiming to keep

the critical path as is but making minor improvements in UX or DevX. Good examples of UX-driven

extensions can be the addition of user notifications or progress indicators. DevX extensions could

include custom loggers, monitoring modules, domain event triggers, and so on.

Both core flow adjustment patterns can also be used to deliver UX and DevX extensions. Still, it

is usually considered an anti-pattern due to the significant difference in processing criticality

and SLO between the core flow and plugins; Framework developers should limit possible core

flow modification by providing dedicated extension interfaces for UX and DevX purposes only.

For example, there might be the following enhancement extension interfaces offered by the ADF

developers:

•	 Notifications

•	 Event triggers

•	 Logging

•	 Monitoring

A good example of applying the Plugin pattern to one of the well-known OSS Frameworks is ASP.

NET Core. The ILogger and IHealthCheck interfaces allow custom implementation that should

be registered in app settings and Program.cs (where applicable).

https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming
https://www.artima.com/articles/the-dci-architecture-a-new-vision-of-object-oriented-programming

Chapter 3 63

 The following is the visualization of the proposed structure.

Figure 3.5: Control flow extensions, added by the application developer as plugins

The previous visualization suggests that plugins are integrated with the pipeline, but in a way

that differs from the core processing integration. ADF developers can provide additional value

with their Framework by building “out-of-the-box” object processors and plugins that can be

used without additional effort. It also works in both directions if ADF is exposed as open source

software, providing access to community-driven development of an even broader range of object

processors and plugins.

Once implemented, these plugins must be registered within the Framework, following a similar

registration pattern to what we discussed in the Entity/object registration and Managing object pro-

cessors sections. This pattern is essential for integrating custom application extensions, allowing

the Framework to manage control flow efficiently. Notably, registration can occur during design

time in Frameworks or via platform runtime APIs.

Application Development Framework Blueprint64

Technical flow pattern
This part of the ADF blueprint is focused on a Framework’s runtime execution. The ADF devel-

oper should assume a standard project configuration at its baseline, with default entities/objects

registered and a default processing pipeline configured. For this setup, the developer must ensure

that the system can operate at a production-level quality, covering performance, load tolerance,

scalability, traceability, availability, and other critical qualities (often referred to as “-ilities”)

depending on the developer’s goals. This runtime quality is specified by the “glue” code, which

is often invisible to end users of the ADF but is crucial to the overall stability and efficiency of

the system. Hence, this part of the ADF requires careful attention in the blueprint and involves

its own set of architectural patterns.

While these patterns may not directly impact the application developer’s experience during the

design phase, they are critical to the evaluation of the ADF itself. The quality of the technical flow

execution is a significant factor in determining whether the Framework is fit for purpose. These

patterns are essential for ADF developers to organize and structure the “hidden” components

that perform the runtime jobs, ensuring smooth and efficient operation.

In general, this part of the ADF blueprint aligns with standard principles of software architecture

design, such as the following:

•	 Separation of concerns: Ensuring each part of the system has a distinct responsibility

•	 Modularity: Building a system composed of interchangeable and independently func-

tioning modules

•	 Standards and best practices: Adhering to widely accepted coding standards and archi-

tectural best practices

•	 Runtime quality assurance: Continuously validating and improving the performance,

security, and reliability of the system

The following are some of the key patterns in this context:

•	 Configurator: The Configurator pattern deals with managing the system’s runtime con-

figuration, which may include the object registry, the processing setup, and the state of

various plugins. Depending on the maturity of your ADF, this configuration can be static

(e.g., JSON or YAML files stored in a code repository), dynamic (e.g., coded functions or

services that generate configuration at runtime), or a hybrid approach (e.g., a configura-

tion service API that combines static and dynamic aspects).

Chapter 3 65

•	 Transformer: The Transformer pattern is responsible for interpreting user-defined object

definitions in a way that the Framework can understand and process. It involves various

operations such as serialization and deserialization, type casting, and mapping user ob-

ject fields to standardized message schemas. As the complexity of the Framework grows,

so does the need for sophisticated transformation logic to handle diverse data formats

and structures.

•	 Data binding: Data binding refers to the technique of connecting UI elements (such as

input fields, text boxes, and dropdowns) directly to the underlying data model, allowing

for automatic updates and synchronization. In an ADF, data binding is responsible for

managing how data flows from the application’s data layer to its presentation layer and

vice versa. The primary goal of data binding is to reduce the amount of boilerplate code

required for manual data manipulation and event handling, thereby enhancing developer

productivity and ensuring a more responsive UI. Let’s look into the following variations

of this pattern that are available:

1.	 One-way data binding

•	 In this approach, the data flows in a single direction, usually from the data

model to the UI components. However, one-way data flow is also possible

in the opposite direction, from View to Model (e.g., in the case of sign-up

form implementation). Changes in the data model are reflected in the UI,

but not the other way around. This is suitable for scenarios where the

UI needs to display read-only data or where user input is not required to

modify the underlying data.

Example use case: Displaying a list of products fetched from a server. The

UI shows the products, but any changes made to the product data in the

backend are not reflected in the list unless it is explicitly re-fetched.

2.	 Two-way data binding

•	 Two-way data binding establishes a bidirectional link between the data

model and the UI components. Any change in the data model is automati-

cally reflected in the UI, and vice versa. This type of binding is ideal for inter-

active applications where user input directly impacts the application’s state.

Example use case: A form where users can edit their profile information. Any

change in the input fields is immediately reflected in the data model, and

any programmatic change to the model updates the UI.

Application Development Framework Blueprint66

3.	 One-time data binding

•	 This is a variant of one-way data binding where the data is bound to the

UI components only once, typically at the time of the component’s ini-

tialization. The UI does not reflect any changes in the data model after

the initial binding.

Example use case: Displaying static data that does not change over the course

of the application’s lifetime, such as a terms and conditions statement.

There are several mechanisms and techniques for data binding that ADF developers can con-

sider implementing, depending on its criticality, the Framework’s maturity, and other possible

constraints:

•	 Declarative binding

•	 This involves using markup languages (such as HTML or XML) with special at-

tributes or directives to define data bindings directly in the UI templates. This

method is common in Frameworks that support declarative syntax, such as An-

gular or Vue.js.

Example: <input type="text" [value]="user.name"> in Angular binds the user.

name property to the input’s value.

•	 Imperative binding

•	 This involves using programmatic methods (such as JavaScript functions or APIs)

to establish data bindings. This approach offers more flexibility and control, but

can lead to more verbose code.

Example: JavaScript code that manually sets the input field’s value

based on the data model: document.getElementById('name').value = user.

name;.

ADF developers should also consider binding context and scope localization to find a balance

between technical quality and applicability. Understanding the context in which data binding

occurs is crucial for effective implementation. The binding context defines which data model

properties are accessible from a given part of the UI. For example, in Frameworks such as React,

the binding context is typically the component state or props.

Chapter 3 67

Finally, the following are some advanced techniques for implementing data binding in ADF:

•	 Optimize data flow: Leverage efficient data-binding strategies that minimize unneces-

sary data updates, such as avoiding two-way binding when not required or using change

detection techniques to reduce overhead. Overuse of data binding, especially two-way

binding, can lead to performance bottlenecks in large applications due to excessive DOM

updates and change detection cycles.

•	 Use observables and reactive programming: Employ observables (e.g., RxJS in Angular)

and reactive patterns to handle data flow in a more controlled and predictable manner,

especially for complex or asynchronous data sources.

•	 Virtual DOM and diffing algorithms: For Frameworks such as React, data binding is

optimized using a virtual DOM. Changes to the data model do not directly alter the real

DOM; instead, they update a virtual representation, which is then compared (or “diffed”)

against the actual DOM to apply the minimal number of changes.

•	 Data binding with WebSockets: Real-time data binding can be achieved using Web-

Sockets to push updates from the server to the client, ensuring the UI reflects the most

current state of the data model.

Data binding is a powerful tool within an ADF, reducing the amount of code needed to synchronize

the UI and data model while enhancing responsiveness and UX. However, using data binding

judiciously is essential, considering the application’s performance requirements and complexity.

Properly implemented, data binding can significantly streamline application development and

maintenance, making it a foundational element of modern software architectures.

Data flow
Data flow refers to the communication components that dictate how data is exchanged within

and between applications. These patterns play a crucial role in ensuring that the application’s

architecture can manage the data flow effectively, which is pivotal for achieving responsiveness,

efficiency, and scalability in distributed systems. The following aspects define the data flow:

Protocols and contracts (REST, GraphQL, gRPC/Protobuf, etc.): These define standard ways for

components to communicate, ensuring that applications can exchange data reliably and under-

stand each other’s data formats. REST excels in defining a data objects’s life cycle (e.g., CRUD,

state updates). GraphQL is the best tool for complex data hierarchies that allow trusted clients

to specify exactly what data they need. gRPC is well suited for imperative communication (e.g.,

a remote procedure call), combining high performance, schema portability, and manageability

by using Protobuf for efficient binary serialization.

Application Development Framework Blueprint68

Command Query Responsibility Segregation (CQRS): This pattern separates read and write

operations for data storage. It allows a system to scale more effectively by optimizing read oper-

ations separately from write operations, which can be particularly beneficial in systems where

read and write patterns differ significantly.

•	 Publish/Subscribe (Pub/Sub): This pattern allows messages to be broadcast asynchro-

nously to multiple subscribers. It simplifies the messaging system and decouples the mes-

sage sender from its receivers, enabling scalable and dynamic communication scenarios.

•	 Message queue: This implements a queue system where messages are stored until they

are processed. It is crucial for managing asynchronous communication in systems where

operations or data processing are not required to be in real time, but must ensure reliabil-

ity and consistency of data delivery. It also enables an event-driven architecture (EDA)

approach to the system design.

•	 Batch Processing: This pattern accumulates data or tasks and processes them collectively:

by explicit command, or at scheduled intervals, or once a certain threshold is reached.

Batch processing is ideal for efficiently handling large volumes of data where real-time

processing isn’t required. It enhances system performance by reducing overhead asso-

ciated with individual item processing, providing predictable resource utilization, and

improving throughput for operations such as bulk data imports, exports, report generation,

and data transformations.

•	 Streaming: This pattern continuously processes data in real time as it’s generated or

received. Unlike batch processing, streaming provides immediate processing, enabling

timely analytics, monitoring, and rapid responses. It’s essential for applications that

require real-time data insights, such as event monitoring, fraud detection, real-time an-

alytics, and live data feeds. Streaming architectures typically leverage technologies such

as Apache Kafka, Apache Flink, and AWS Kinesis to manage high-throughput, low-latency

data flows efficiently. Streaming can also be closely integrated with event sourcing, where

changes in application state are captured as a sequence of events, enabling real-time state

reconstruction, audit trails, and enhanced system observability.

Error handling and recovery
Another critical aspect of the technical flow pattern is the error handling and recovery subsystem.

This pattern focuses on how the Framework deals with unexpected conditions or failures during

runtime. An ADF should offer a robust mechanism for error detection, logging, notification, and

recovery to maintain high availability and reliability.

Chapter 3 69

Key functions of the error handling and recovery pattern can include the following elements:

•	 Error detection and logging: Identifying errors promptly and logging them with sufficient

detail to aid debugging

•	 Error propagation: Deciding whether errors should bubble up through the system or be

contained locally

•	 Retry strategies: Implementing configurable strategies for retrying failed operations, such

as exponential backoff or immediate retries

•	 Fallback mechanisms: Providing alternative methods or paths when a primary function

fails, such as switching to a backup service or using cached data

•	 Circuit breaker: Temporarily halting the execution of failing operations to prevent cas-

cading failures across the system

By incorporating these patterns, the ADF ensures resilience and reliability, allowing applications

built on the Framework to handle real-world scenarios gracefully.

Source code structuring
The final implementation of an ADF that correctly integrates all the patterns mentioned earlier

may include dozens or even hundreds of code files. It’s essential for the ADF developer to keep in

mind that their Framework will be integrated into real-world software projects as part of a larger

ecosystem. This means all source files of your ADF will coexist in a project repository alongside

domain-specific code and potentially even other Frameworks. Therefore, the source code structure

of your ADF should be treated as a specialized form of UI; it is a crucial touchpoint for developers

who will use, extend, manage, and troubleshoot the project based on your Framework.

The following are the principles of effective source code structuring:

•	 Clarity and readability: Your source code should be organized in a way that is immediately

understandable to developers from the targeted domain. This includes using meaningful

directory names, clear module separation, and consistent naming conventions. The goal

is to minimize the cognitive load on developers when they navigate the project.

Example: Group files based on functionality (e.g., core, plugins, utils, etc.) and ensure that

the directory hierarchy reflects the Framework’s logical structure. For instance, placing

all serialization functions in a dedicated folder helps developers quickly find and under-

stand auxiliary code.

Application Development Framework Blueprint70

•	 Modularity and encapsulation: Follow the principles of modularity and encapsulation

to ensure that each module or component is responsible for a single concern. This makes

the Framework easier to extend, test, and maintain.

Example: If your ADF includes data transformation and configuration management func-

tionalities, consider placing them in separate modules such as transformers and config-

urators.

•	 Consistency with industry standards: Align the code structure of your ADF with well-

known industry standards and practices, particularly those that are familiar to the target

developer audience. Avoid creating a unique or unconventional structure unless there is

a clear and documented rationale.

Example: For frontend Frameworks, follow common directory conventions such as src

for source files, components for UI components, services for API integrations, and so on.

Ease of navigation and discoverability
Make it easy for developers to find the files they need to extend or modify. This involves organiz-

ing code into clearly defined categories and providing documentation or a guide explaining each

folder’s purpose and key file.

For example, include a README.md file in each central directory, briefly describing its contents

and purpose.

Minimal dependencies
Aim to minimize dependencies between different parts of the Framework to reduce coupling

and improve maintainability. Ideally, each module or component should be able to function

independently or with minimal interaction with others.

For example, avoid tightly coupling your data processing logic with UI components. Instead, use

well-defined interfaces or events for communication between disparate parts of the Framework.

Source code availability
As an additional note on ADF adaptability, depending on how your Framework is delivered, the

code structure may be partially or fully squished by tools such as code minifiers, obfuscators, or

package managers – this is especially relevant for frontend web Frameworks such as React and

Angular. Despite this, the best practice and development etiquette suggests that a complete source

code (even if minified or obfuscated) should be available to users.

Chapter 3 71

For open source Frameworks, provide a clear, easy-to-navigate source code structure that encour-

ages community contributions and fosters collaboration. Use tools such as ESLint and Prettier

for consistent coding styles.

Other recommendations and best practices
The following are related suggestions that aren’t directly mapped to the Framework architec-

ture, but aim to help in making the Framework development process easier for the Framework

developer role:

•	 Extract from real-life projects: The most intuitive source code structures often come

from real-life successful projects. Consider using these as a base for your Framework’s

structure. This will make it easier for developers already familiar with specific patterns

to adopt and use your ADF.

Example: If you are building a Framework for financial applications, examine the code

structures of leading financial software projects to identify common patterns and orga-

nization strategies.

•	 Document your structure: Documentation is crucial. Provide detailed guides that de-

scribe the organization of your code base, including the purpose of each folder and any

dependencies between modules. This will help developers quickly understand how to

use and extend the Framework.

Example: Maintain an up-to-date architecture.md file that outlines the Framework’s

structure, key modules, and their relationships.

 Note

Please note that here, we discuss a functional structure (one based on a finance

subdomain) rather than the technical structure we mentioned in the Consistency

with industry standards paragraph. Such a functional structure is independent of

the technical one, and ADF developers can use any of them as a primary structure.

However, for a domain-specific Framework, it is suggested to use a functional struc-

ture as the primary one, so each domain-specific folder will have a full set of tech

subfolders such as models, components, utils, API, and so on.

Application Development Framework Blueprint72

•	 Enable source code accessibility: Regardless of whether your Framework follows an open

source or proprietary model, ensure the source code is accessible to its users. For internal

Frameworks, provide access to the complete source code within the organization to allow

for debugging, custom extensions, and internal enhancements.

By adopting these best practices for source code structuring, you create a developer-friendly,

maintainable, and scalable environment. The source code structure becomes integral to the

Framework’s UX, directly influencing how easily developers can adopt, extend, and contribute to

your ADF. A well-organized code base reduces friction and increases the overall value and appeal

of your Framework in the software development community.

ADF maturity model
A maturity model for an ADF (ADF MM) provides a structured path for the evolution of the

Framework from its initial concept to a fully mature and robust system. As with any software

product, an ADF must grow in capability, quality, and resilience to meet the increasing demands

of its users and the broader development community. A maturity model helps Framework devel-

opers assess their current state, identify gaps, and plan incremental improvements to achieve a

higher level of maturity.

Here are some key reasons why a maturity model is essential for ADFs:

•	 Guiding continuous improvement: A maturity model provides a roadmap for continuous

improvement, ensuring that the ADF evolves systematically rather than haphazardly. By

defining specific stages of maturity, the model guides Framework developers in enhancing

key attributes such as performance, scalability, security, and DevX.

•	 Standardizing evaluation criteria: With a maturity model in place, developers, organi-

zations, and stakeholders can evaluate the quality and readiness of an ADF against stan-

dardized criteria. This helps them assess whether the Framework is suitable for production

use and whether it can support the needs of complex and large-scale projects.

•	 Aligning with organizational goals: Organizations using or building a proprietary ADF

can align the Framework’s capabilities with their strategic goals. A maturity model helps

ensure that the Framework evolves in a way that supports the organization’s specific

needs, such as compliance with industry standards to support growth or integration

with existing systems.

•	 Facilitating stakeholder communication: A maturity model provides a clear, common

language for discussing the Framework’s capabilities and future direction for internal

and external stakeholders. This shared understanding helps set realistic expectations,

secure buy-in, and ensure that all parties are aligned in their vision for the Framework.

Chapter 3 73

•	 Keeping it pragmatic: A maturity model also helps avoid over-investment in capabilities

that may not be necessary or valuable to the Framework’s stakeholders. By defining and

focusing on the maturity levels most relevant to the current needs and strategic goals,

Framework developers can prioritize investments in areas that provide the greatest benefit

rather than expending resources on features or enhancements beyond the stakeholders’

immediate requirements or interests. This ensures that Framework development remains

cost-effective and aligned with user expectations.

•	 Encouraging contribution and community engagement: For open source ADFs, a ma-

turity model can serve as a reference for the community to understand how their contri-

butions can help elevate the Framework to the next level. It provides a structured way for

contributors to know where they can have the most impact, whether through documen-

tation, new features, bug fixes, or performance improvements.

There are several well-known maturity models in the software and process improvement do-

mains that provide valuable insights into structuring an ADF maturity model. These models

have proven successful in guiding organizations and software products toward higher levels of

capability and quality:

•	 Capability Maturity Model Integration (CMMI): CMMI is a process-level improvement

training and appraisal program. Initially developed by the Software Engineering Insti-

tute (SEI) at Carnegie Mellon University, it is widely used for assessing and improving

software development processes. CMMI defines five maturity levels (initial, managed,

defined, quantitatively managed, and optimizing) that represent a progression from ad

hoc, chaotic processes to highly structured and continuously improving processes. The

CMMI Framework is particularly useful for organizations seeking to improve their process

maturity to deliver software more predictably and efficiently.

•	 Agile Maturity Model (AMM): The AMM is designed for organizations and teams adopt-

ing Agile methodologies. This model focuses on evaluating and enhancing Agile practices

across various dimensions, such as team collaboration, iterative development, continu-

ous integration, and customer feedback. This model helps organizations transition from

basic Agile practices (e.g., Daily Standups and Sprint Planning) to advanced levels (e.g.,

continuous delivery, full test automation, and lean startup methodologies). The AMM

is useful for teams aiming to measure their Agile adoption and identify areas for growth.

Application Development Framework Blueprint74

•	 DevOps Maturity Model: The DevOps Maturity Model evaluates the adoption of DevOps

practices within an organization. It focuses on aspects such as automation, continuous

integration/continuous deployment (CI/CD), monitoring, and collaboration between

development and operations teams. The model defines maturity levels that range from

“Initial” (where DevOps practices are minimal or non-existent) to “Optimizing” (where

DevOps is fully integrated into the organization’s culture and processes). For ADFs, con-

sidering DevOps maturity is essential for Frameworks supporting smooth deployment,

monitoring, and scaling in production environments.

•	 Open Source Maturity Model (OSMM): The OSMM evaluates the maturity of open source

projects based on criteria such as community activity, code quality, documentation, and

governance. It is particularly useful for organizations considering the adoption of an open

source ADF or for those developing one. The OSMM provides guidelines for assessing

whether an open source Framework is reliable and sustainable in the long term.

By adopting a maturity model tailored to ADFs, developers and organizations can ensure their

Frameworks grow in a structured, predictable, and sustainable manner. Learning from well-es-

tablished maturity models, such as the CMM, AMM, and DevOps Maturity Model, can provide

valuable insights and benchmarks in corresponding areas. We hope to achieve this with an ADF

MM. Ultimately, an ADF MM helps establish a clear path for continuous improvement, adoption,

and alignment with strategic goals, ensuring that the Framework remains relevant and valuable

in a rapidly evolving software landscape.

ADF MM levels
Now, let’s examine proposed ADF MM levels with a focus on simplicity, investment of effort,

usability (ease of integration, extension, and management), and universality (ability to support

a wide range of technologies or use cases).

Level 1: Unextracted
The ADF is not yet a standalone Framework. It exists only as part of a specific software project,

with its control flow and functionality embedded within the container software system. The

Framework is not abstracted or modularized and is tightly coupled to the particular project for

which it was created.

Chapter 3 75

Its characteristics are as follows:

•	 Investment: Minimal investment beyond what is necessary for the original project; the

ADF is created as a byproduct of solving specific problems within that project

•	 Complexity: The source of complexity is the coupling between a Framework and a domain

of the original software product; the Framework itself is simplistic due to very narrow

use case support

•	 Modularity: Lacks modularity or separation; the Framework is interwoven with the ex-

isting project’s code base

•	 Configurability: Minimal or non-existent configuration options; any customization re-

quires deep knowledge of the underlying software project

•	 Documentation: Limited or no standalone documentation; instructions are typically part

of the overall project documentation

•	 Scope: Only usable within the context of the existing software project; no consideration

for broader applicability

•	 Control flow: Managed directly by the container application, with no distinct life cycle

or runtime independence

•	 Usability and DevX: Very low usability; not designed for integration or extension outside

the original project

The risks are as follows:

•	 Highly dependent on the original project’s architecture and life cycle

•	 Difficult to reuse or adapt to other contexts or projects

•	 No scalability or flexibility beyond the initial scope

Example: An internal data handling library within a specific enterprise application, with all logic

and processes tightly integrated into the application’s main code base.

Level 2: Minimal viable Framework (MVF)
The ADF is designed to meet the most basic needs with minimal development effort. It is simple,

with a narrow focus, and is limited to a specific use case or technology stack.

Its characteristics are as follows:

•	 Investment: Low investment in development and maintenance

•	 Complexity: Simple, lightweight, and easy to understand

Application Development Framework Blueprint76

•	 Modularity: Limited functionality and modularity; provides only core features

•	 Configurability: Limited configuration options

•	 Documentation: Basic documentation

•	 Scope: Usable for single or very similar applications with minimal customization

•	 Control flow: Externalized as a single monolithic module responsible for a whole tech-

nical process

•	 Usability and DevX: Low usability; requires manual steps (e.g., copy-paste sources) for

integration or extension outside the original project

The risks are as follows:

•	 Broad focus or prioritizing future capabilities can bloat the ADF backlog

•	 The ADF initiative can still easily die at this stage without sponsorship due to relatively

low value and narrow use case support

Example: A tiny utility Framework to handle HTTP requests within a specific internal project.

Level 3: Bulletproof Framework
The ADF introduces modular components, making it easier to extend and adapt to different

contexts while maintaining a simple structure. It supports a range of use cases and technologies,

balancing simplicity and flexibility with a focus on usability and ease of integration.

Its characteristics are as follows:

•	 Investment: Moderate investment in development and maintenance, focused on modu-

larity, configurability, and documentation improvement.

•	 Complexity: Increased complexity due to additional abstraction layers introduced to sup-

port better extensibility by custom components (e.g., loggers, serializers, and processors).

•	 Modularity: Clear separation of concerns and robust extension mechanisms.

•	 Configurability: Increased configuration options, enabling limited customization.

•	 Documentation: Well-documented APIs and guidelines, and a growing set of utilities

or plugins.

•	 Scope: Usable for diverse applications but still prioritizes simplicity; customizations are

possible but not officially supported. It can support more than one technology in its core

flow, but still cover a single application domain.

Chapter 3 77

•	 Control flow: Extensible modular implementation with the default recommended im-

plementation provided out of the box.

•	 Usability and devexperience: Designed for ease of integration and management across

different projects.

The risks are as follows:

•	 Focus on technical improvements or features is less important at this stage than adoption.

It is better to focus on documentation, packaging, and other DevX areas.

Examples: Nuxt.js (JavaScript), Kafka Connect, Express.js (JavaScript), Flask, FastAPI, and many

others.

Level 4: Advanced extensible Framework
The ADF is highly flexible, with extensive support for integration, extension, and management.

It is suitable for a wide range of use cases and environments.

Its characteristics are as follows:

•	 Investment: Significant investment in development, especially in areas such as modularity,

customization, and integration.

•	 Complexity: Even more abstractions introduced to cover multiple technology stacks, stan-

dards, and platforms (e.g., cloud, on-premises).

•	 Modularity: Improved testability through more granular modularity. It provides extensive

APIs, hooks, and extension points.

•	 Configurability: Includes automated tools for configuration management, testing, de-

ployment, and monitoring.

•	 Documentation: Has a library of sample projects implemented with the Framework, tu-

torials, community support, and an open directory of utilities, modules, and plugins.

•	 Scope: High universality; capable of supporting various technologies and complex use

cases. It can span multiple application domains (e.g., web and mobile or data analysis

and visualization).

 Note

Most proprietary Frameworks should not evolve above this level due to a decrease

in return on investment (ROI) and a limited number of reuses inside a single or-

ganization.

Application Development Framework Blueprint78

•	 Control flow: Optimized processors with an advanced test harness for scalability, load

tolerance, and performance.

•	 Usability and DevX: Very high usability; suitable for complex, large-scale applications

and diverse environments.

The risks are as follows:

•	 Focus on technical improvements or features is less important at this stage than adoption.

It is better to focus on documentation, packaging, and other DevX areas.

Examples: A Framework that can handle both frontend and backend (as a server-side rendering

tooling), such as Angular. Multiple other well-known Frameworks are include Spring Boot, Ten-

sorFlow, and so on.

Level 5: Comprehensive ecosystem Framework
The ADF has evolved into a complete ecosystem and is capable of efficiently supporting a broad

spectrum of use cases, technologies, and environments. It is highly optimized for performance,

security, and scalability.

Its characteristics are as follows:

•	 Investment: Continuous investment in all areas, including architecture, automation, se-

curity, and UX. Community contribution becomes a significant part of the growth factor.

•	 Complexity: Even more abstractions introduced to cover multiple technology stacks, stan-

dards, and platforms (e.g., cloud, on-premises).

•	 Modularity: Highly modular, pluggable, and extensible, focusing on best practices and

standards.

•	 Configurability: Full life cycle management, including automated CI/CD pipelines, ad-

vanced monitoring, analytics, and governance tools.

•	 Documentation: Engages a vibrant community or organizational backing with regular

updates and feedback loops, providing books, tutorials, and articles covering a wide range

of relevant scenarios.

•	 Scope: Supports various technologies, platforms, and use cases. This range is continu-

ously extended by external software systems that start adding integration capabilities

to support your ADF.

Chapter 3 79

Figure 3.6: Visual Framework development Canvas preview

This Canvas is divided into several key areas, each designed to highlight a critical aspect of the ADF:

1.	 Application Development Framework (ADF) Description: A brief, high-level description

of the Framework, ensuring all stakeholders have a unified understanding.

2.	 Why: Business Value Aspects: Outlines the rationale behind implementing the ADF, in-

cluding key benefits and expected ROI calculations, allowing stakeholders to gauge the

financial and operational impact.

3.	 What: Logical Model: Details the core objects, entities, and (optionally) architecture

patterns that the ADF will manage, offering a foundational model to guide the design

and structure. More information about the technological realms mentioned in this block

can be found in Part 3 of the book.

4.	 How: Technical Stack: Lists the technologies, languages, and standards required for

implementation, helping teams choose the right tools and ecosystems. There is a dedicated

subsection about this part of the Canvas following this one.

5.	 Implementation Scope and Target Maturity Level: Defines the scope of the ADF and the

targeted maturity level, offering clear boundaries and goals for the development process.

6.	 Who: ADF Stakeholders: Identifies the key stakeholders, including sponsors, owners, and

contributors, ensuring everyone involved understands their roles and responsibilities.

Application Development Framework Blueprint80

7.	 Risks and Constraints: Highlights potential risks that could impact the success of the

ADF, helping teams prepare for challenges and mitigate risks proactively.

By completing each Canvas block, you can create a comprehensive and cohesive strategy for your

ADF, ensuring alignment from initial conception to full deployment. You can find all the guidance

and descriptions necessary to complete the Canvas in the previous chapters and sections of this

book. The only Canvas block that this book has not yet covered is the tech stack block. To fill in

this gap, please see the following section.

Defining a tech stack
Before beginning Framework development, it is essential to establish a clear and comprehensive

tech stack. Usually, this simply involves documenting existing facts, as the technologies and

languages are already established. This tech stack will form the backbone of the Framework’s

architecture, influencing everything from design and functionality to long-term maintenance

and scalability.

Please note that Chapter 4 will give you detailed guidance on the tech stack definition process.

The purpose of this section is to outline the topic briefly to allow you to fill in the Canvas before

diving into technical details, as suggested by Chapter 4. The following are key considerations to

make when defining your tech stack.

Technologies
Storages and drivers: This category includes all forms of data storage technologies such as re-

lational databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra), and object

storage (Amazon S3, Google Cloud Storage). Drivers are essential libraries that enable applications

built with the Framework to interact with these storages. They ensure that the Framework can

perform data operations such as reading, writing, and managing transactions efficiently across

various storage systems.

 Note

Please note that you might not have all the necessary information to fill in all the

sections of the initial stage of the ADF implementation initiative. Just keep it updated

regularly when more context is available down the road.

Chapter 3 81

•	 Control flow: Multiple control flows to support edge cases (such as the Django admin

flow that complements the primary web application rendering flow).

•	 Usability and DevX: Extremely high usability; easily integrates with complex enterprise

systems and scales effortlessly.

The risks are as follows:

•	 It might be too expensive to maintain such an ADF without a vibrant community, so at

this stage, the focus should be on building a social ecosystem around the Framework.

Examples: A comprehensive Framework such as Kubernetes that supports container orchestration,

multi-cloud deployments, and a wide range of development and deployment scenarios. React,

Spring, Django, and Node.js are other representatives that can be classified as top maturity ADFs.

The following section aims to provide a simple tool for capturing, collaborating on, and presenting

a Framework definition that addresses all blueprint elements.

ADF Canvas guide
The ADF Canvas serves as a strategic visualization tool to align stakeholders before the devel-

opment and implementation of your Framework. By breaking down the ADF into constrained

but very specific blocks, the Canvas helps justify the value of your Framework, align your team’s

focus, and ensure consistency throughout the project life cycle. Please note that the following

figure is just a preview; the original-sized Canvas can be found at the link following the figure.

 Note

These levels allow ADF developers to align their Framework’s growth with stake-

holder needs and investment strategies. By understanding where the Framework

currently stands and where it needs to go, they can avoid over-investing in unnec-

essary capabilities or complexity. Each level balances simplicity, development effort,

usability, and universality in a way that is aligned with the Framework’s target

audience and use cases. This ensures that the Framework evolves in a controlled,

cost-effective manner, providing maximum value to its users without unnecessary

complexity.

Application Development Framework Blueprint82

Transport and communication protocols/serialization formats: Protocols and formats such

as HTTP, WebSocket, gRPC, and Protobuf are fundamental for defining how data is transmitted

between clients and servers. These are crucial for Frameworks that require reliable data exchange

mechanisms, supporting features such as remote procedure calls (RPCs) and real-time data

streaming.

Calculations and toolkits: For Frameworks that involve heavy computational tasks, incorporat-

ing specialized libraries and toolkits is essential. Examples include OpenCV for image processing

tasks, CUDA for accelerating computations using NVIDIA’s GPUs, and TensorFlow for machine

learning. These toolkits provide optimized functions and operations that enhance the Framework’s

performance in specific computational domains.

Programming languages
Core programming languages: These are the languages used to write the main components, li-

braries, and toolkits of the Framework. They determine the Framework’s performance, capabilities,

and application scope. For example, C++ might be used for developing high-performance game

engines, while Python could be favored for Frameworks geared toward rapid development and

prototyping in web and data science applications.

•	 Interface programming languages: These are languages used for scripting, templates,

and other elements that directly interact with the user or other systems. Examples include

JavaScript for client-side scripting, Lua for scripting in game engines, and XML/XSLT for

defining and transforming data. These languages facilitate development and provide

flexibility in configuring application behaviors.

•	 Configuration and management languages: These languages and formats are used for

configuration, describing the runtime environment, and managing the application life

cycle. A classic example is Dockerfile, used to create Docker containers specifying the oper-

ating system, dependencies, runtime environment, and commands to be executed. These

languages are often declarative and specialized for managing infrastructure and resources.

Sometimes, a Framework can directly bring functionality from one programming language to an-

other by utilizing that language. This means that the Framework somehow integrates its control

flow with the use of another programming language. Examples include the classic use of JavaS-

cript in web Frameworks such as Django, as well as newer approaches where a Framework such

as TensorFlow, which masks the use of C++, and a newer Framework in Python using Rust under

the hood, can directly bring the functionality of this language, thus its technological domain to

our (see https://github.com/sparckles/Robyn).

https://github.com/sparckles/Robyn

Chapter 3 83

Development tooling
Code and code structure generators: These tools automatically generate boilerplate code, data

models, and even entire project structures based on predefined templates or schemas. They sig-

nificantly speed up development and ensure consistency across projects by enforcing standard

patterns and practices.

Testing engines: These include Frameworks and tools that support unit testing, integration

testing, system testing, and sometimes acceptance testing. Popular examples include JUnit for

Java, pytest for Python, and Mocha for JavaScript. The effective use of testing engines ensures

that the Framework and the applications built with it are reliable and meet quality standards.

Documentation engines: Tools such as Javadoc, Sphinx, and Doxygen automatically generate

user-friendly, up-to-date documentation from the code base. Good documentation is crucial for

any Framework as it aids developers in understanding and utilizing the Framework correctly,

thereby enhancing the DevX and adoption. Tools such as Swagger, for designing and documenting

REST APIs, ensure your Framework can interact effectively with other software (such as GitHub

pages and wiki-based engines).

By clearly defining these aspects of the tech stack, you can establish a foundation that supports

effective development and ensures that the Framework can adapt to future technological changes

or enhancements. This preparation not only streamlines the development process but also en-

hances the Framework’s longevity and usability, providing clear guidelines for developers and

encouraging consistency across different parts of the Framework.

Summary
This is the final “theoretical” chapter of the book that is focused on better understanding the

whole conceptual domain of building Frameworks. Use the information from this chapter to break

down your Framework into easy-to-comprehend parts, apply architecture patterns to streamline

Framework development and adoption, and make sure you have covered all important aspects.

Use the hints provided here to improve your Framework code structure. A maturity model gives

you a tool to optimize your investment in the Framework to make it fit its purpose with minimal

risk of over-engineering. Finally, use the Canvas to easily capture and communicate significant

decisions related to the Framework development.

The following chapters will provide step-by-step guidance for building any complex Framework,

referring to the Framework fundamentals covered by the initial three chapters.

Application Development Framework Blueprint84

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 2
Building a Framework

Design, architecture, and implementation practices
This part guides you through the architectural and technical practices involved in creating robust

and reusable frameworks. From establishing a sound architecture and choosing the right tech

stack to managing control flows and release cycles, it will help you transform ideas into working

systems. Whether you’re bootstrapping a minimal viable framework or evolving a mature one,

this section offers actionable insights for engineering execution.

This part has the following chapters:

•	 Chapter 4, Defining Your Tech Stack

•	 Chapter 5, Architecture Design

•	 Chapter 6, ADF Development Fundamentals

•	 Chapter 7, Documenting and Releasing a Framework

4
Defining Your Tech Stack

In the rapidly evolving landscape of software development, understanding and strategically defin-

ing your technology stack is paramount. This is especially crucial when viewed through the lens

of Application Development Frameworks (ADFs). A technology stack encompasses the intricate

ecosystem of programming languages, tools, libraries, and frameworks that collectively power

the creation and operation of your applications. Far more than a mere collection of technologies,

your stack forms the bedrock of your development and operational infrastructure, profoundly

influencing everything from initial project execution to long-term scalability and maintenance.

This chapter delves into the nuanced process of crafting and refining a technology stack tailored

for contemporary software frameworks. As organizations increasingly rely on bespoke software

solutions to drive innovation and maintain a competitive edge, the significance of a well-archi-

tected technology stack cannot be overstated. It not only addresses current operational demands

but also ensures the flexibility to adapt to emerging technologies and shifting market dynamics.

We will explore the delicate interplay between domain expertise, user-centric design principles,

and strategic technology choices that coalesce to create robust, efficient, and intuitive frameworks.

Our discussion will encompass critical components such as data storage solutions, computa-

tional tools, and development environments that collectively form the backbone of a successful

framework.

We will cover the following topics in this chapter:

•	 Key concept and alignment with technological realms

•	 Exploring languages and libraries

Defining Your Tech Stack88

Key concept and alignment with technological realms
When developing a technology stack for a new framework, drawing upon deep domain expertise

is not just beneficial but often crucial for its success. This expertise ensures that the framework

can harness proven methodologies and technologies, reducing the need to reinvent the wheel.

In the following diagram, we demonstrate the most common hierarchy of components of a tech-

nical stack:

Figure 4.1: Technical stack structure

The following points allow you to find the best match to define a technical stack within your

technological realm:

•	 Leveraging existing technologies:

•	 Utilize established libraries, frameworks, and tools within the realm

•	 Focus on unique features rather than basic functionality

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 4 89

•	 This accelerates development and improves reliability, especially in complex fields

such as AI

•	 This also enhances performance and scalability without unnecessary detours

•	 Aligning with user expectations:

•	 Match the technology stack to end user needs and familiarity

•	 Reduce the learning curve and increase adoption rates

•	 Ensure compatibility with existing tools and workflows in the domain

•	 Facilitate seamless integration into current ecosystems

•	 Future-proofing the framework:

•	 Anticipate industry trends and future needs

•	 Understand standard technologies, widespread skills, and gaps in current offerings

•	 Tailor the framework to address both current and future demands

•	 We’ll look at the creation of a framework for implementing Retrieval-Augmented

Generation (RAG) applications based on LLM models as an example and position

it at Level 2 – Validated in the maturity ladder introduced in Chapter 3, so you know

which trade‑offs (speed over polish, DIY over turnkey, etc.) we are optimizing for.

•	 The core idea behind RAG is to enhance the capability of language models by in-

tegrating them with a retrieval system. This hybrid approach enables the model

to dynamically pull relevant information from a large database or collection of

documents during the generation process. This integration allows the model to

produce responses that are not only contextually accurate but also enriched by

external sources.

Here are some of the key challenges that RAG addresses:

•	 Knowledge incorporation: Traditional language models can struggle with generating

responses that require specific knowledge or factual correctness. RAG addresses this by

retrieving relevant documents or data entries to enrich the generation process, ensuring

that the output is both contextually appropriate and factually accurate.

•	 Handling long contexts: Large language models often find managing long-term depen-

dencies or maintaining context over extended texts challenging. RAG mitigates this issue

by pulling in relevant information dynamically as needed, helping to maintain consistency

and relevance throughout longer interactions or documents.

Defining Your Tech Stack90

•	 Reducing training data requirements: Training a model to generate knowledgeable

and accurate text typically requires vast amounts of labeled training data. By leveraging

retrieval mechanisms, RAG can generate high-quality output based on less training data

because it uses existing databases or document collections to inform its responses.

•	 Combatting hallucinations: One of the common issues with generative models is their

tendency to produce “hallucinated” content – fabrications that are not grounded on the

input provided. RAG helps reduce these hallucinations by using the retrieved documents

as a reality check, ensuring that the generated content aligns closely with verifiable in-

formation.

By tackling these challenges, RAG models significantly improve the utility and reliability of lan-

guage generation systems, and the quickest way to feel this benefit is to run a 20‑line PoC.

--- RAG proof of concept -----------------

from langchain_openai import OpenAIEmbeddings, OpenAI

from langchain_community.vectorstores import FAISS

from langchain.chains import RetrievalQA

docs = ["John bought a new MacBook in Berlin.",

 "Apple's M3 chip was released in 2023.",

 "Berlin's Apple Store is near Ku'damm."]

vectordb = FAISS.from_texts(docs, OpenAIEmbeddings())

rag = RetrievalQA.from_chain_type(

 llm=OpenAI(max_tokens=64),

 chain_type="stuff",

 retriever=vectordb.as_retriever())

print(rag.invoke("Where did John get his laptop?"))

Chapter 4 91

Output:

(Chapter4) ➜ Chapter4 git:(main) ✗ python rag.py
{'query': 'Where did John get his laptop?', 'result': ' John got his
laptop at the Apple Store near Ku'damm in Berlin.'}

This exploration into framework creation is an illustrative guide rather than a definitive model,

allowing us to examine design integration and potential complexities.

Let’s examine the RAG key components:

•	 Retriever: This is the heart of the RAG system. It processes queries by passing them to the

embeddings model, which converts queries into vector representations. These embed-

dings enable the retriever to interact with the vector search engine in the vector database,

retrieve relevant context, and construct prompts. The prompts, context, and original query

are then sent to the generative model. This model generates a response from the context,

which returns the final answer.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features.

Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Defining Your Tech Stack92

•	 Vector database: This component manages the vector representations of data. It receives

embeddings from the retriever, uses vector search to locate relevant document contexts,

and returns these contexts to the retriever to aid response generation.

•	 Data loader: This component is responsible for preparing and indexing new data. It pro-

cesses documents into chunks, computes embeddings through the embeddings model,

and indexes these in the vector database to make them searchable for future queries.

With such a definition, we can later define the common logical model of our framework.

Exploring languages and libraries
In many instances, the formation of a tech stack is evolutionary, derived from existing projects

within an organization. For example, a typical web application might be built using React for the

frontend, Django as the web framework, and PostgreSQL for database management. However,

alternative technologies might be integrated based on specific needs or new strategic goals when

considering tooling and testing.

The best practice in defining and evolving a tech stack involves meticulously documenting each

decision within a common knowledge management system. This documentation can adopt var-

ious formats, such as Architecture Decision Records (ADRs) or simple tabular representations,

ensuring clarity and accessibility for all stakeholders.

For projects starting from scratch or when a new ADF is being extracted from a larger ecosystem, a

structured approach is required to define a tech stack that not only meets the current application

requirements but is also robust enough to adapt to future challenges and technological shifts.

This process typically involves documenting existing facts, as the technologies and languages

are already established. This tech stack will form the backbone of the framework’s architecture,

influencing everything from design and functionality to long-term maintenance and scalability.

There are common considerations that could be considered while defining a tech stack, in the

form of a checklist:

•	 Define framework-specific features: The technology needed is dictated by the frame-

work’s primary functionality and operational requirements. For instance, a framework

designed for real-time data processing might benefit from in-memory databases such

as Redis.

•	 Check integration with chosen technological realms: Successful frameworks often must

operate within a broader technological ecosystem. Technologies that integrate well reduce

complexities and enhance efficiency.

Chapter 4 93

•	 Ensure compatibility with the company’s existing technological stack: Compatibility

reduces conflicts, minimizes the learning curve for development teams, and leverages

existing investments in technology.

•	 Consider market coverage of potential storage solutions, community, and a support

ecosystem: A strong community and support ecosystem often leads to quicker problem

resolutions, more frequent updates, and a wealth of shared knowledge.

•	 Evaluate the cost implications: Costs can significantly impact a project’s budget and

overall feasibility, especially for long-term operations.

•	 Check license, vendor, and/or community support: Licensing terms can affect how the

technology is used and distributed, especially in commercial applications. Evaluating this

factor ensures compliance with legal standards, assesses the level of post-deployment

support available, and minimizes risks associated with vendor lock-in, providing flexibility

in future technology choices.

According to our taxonomy in Chapter 3, we must define at least three important components of

the framework’s technological stack: programming languages, technologies (including storage,

transport, and calculation toolkits), and development tooling specially created for the framework.

Programming languages
Usually, it doesn’t make sense to spend a lot of time choosing a programming language, except

when the framework under the hood uses a different language from the company’s stack to im-

plement some features that are not present in the basic stack.

If different programming languages are used in the framework, we can talk about the presence

of a Core Programming Language and an Interface Programming Language.

Core programming languages
These languages bring the most complexity, computational or cognitive, which, in turn, benefits

the applications themselves, isolating the complexity of use at the expense of the framework. This

means that the framework somehow integrates its control flow with another programming lan-

guage. Examples include the classic use of JavaScript in web frameworks such as Django, as well

as newer approaches where a framework such as TensorFlow, which masks the use of C++, and

a newer framework in Python using Rust under the hood, can directly bring the functionality of

this language, thus its technological realm, to our (see https://github.com/sparckles/Robyn).

https://github.com/sparckles/Robyn

Defining Your Tech Stack94

Interface programming languages
This class of programming languages is oriented to the framework’s end users (developers) and

allows highly efficient use of its capabilities. In the ideal version, the code of the applications

using the framework is described declaratively, and the declaratively described objects are built

into the control flow.

 Configuration and management languages
These languages and formats are used to configure and describe the runtime environment, and

manage the application lifecycle. A classic example is a Dockerfile, which specifies the operating

system, dependencies, runtime environment, and commands to be executed when creating Docker

containers. These languages are often declarative and specialized for managing infrastructure

and resources.

Python Golang Rust

AI/ML

Support

Extensive library ecosystem

(LangChain, HayStack) ***
Limited AI/ML libraries*

Less mature AI/ML

support*

Integration

Capability

Seamless with existing tech

stack***

Good but less AI-

focused*

Good but complex

integration*

Performance
Limited in compute-

intensive tasks *

Better performance

than Python**

Superior

performance***

Development

Speed

Rapid development, easy

to use*

Go’s learning curve is

steeper than Python’s,

yet gentler than Rust’s.**

Complex

development, slower

cycles **

Community

Support

Vast, active AI/ML

community***

Strong general

community*
Growing community*

Scalability
May require optimization

for high concurrency*
Excellent*** Excellent***

 Important Note

There is no doubt that a single language could be of all three types. There are a lot of

concerns that make the difference between these types of languages, but frameworks

typically use the same programming language for all. An example of this follows.

Chapter 4 95

Python Golang Rust

Learning

Curve
Low*** Moderate** High***

Final Decision
Selected as primary

language
Rejected Rejected

* – evaluation

This table outlines the selection of Python as the primary programming language for the RAG

framework, highlighting its suitability due to extensive AI/ML libraries, ease of use, and compati-

bility with the company’s tech stack. It documents the context, considerations, and consequences

of this choice, comparing Python to alternatives such as Go and Rust. As the next steps, we need

to define the list of technologies for the project, then we will observe the most common ones.

Storage, transport, and calculations
The choice of data storage technology is usually not a significant difficulty, since the data pro-

cessing process is quite typical for one or another industry.

Expanding on each storage technology with greater depth will involve providing detailed back-

grounds, technical specifications, and more comprehensive use cases and market insights.

Typical storage requirements
The CAP Theorem, formulated by Eric Brewer, elucidates the intrinsic limitations of any net-

worked data system. It emphasizes that only two of the three pivotal attributes – consistency,

availability, and partition tolerance – can be fully achieved simultaneously. This principle is a

crucial framework for designing database systems, particularly in distributed environments. Here

are the main features to consider:

•	 Consistency: This ensures that all nodes in a database present the same data at any given

time. This attribute can manifest in two forms:

•	 Strong consistency – Atomicity, Consistency, Isolation, Durability (ACID): These

properties are typical of traditional relational databases, prioritizing strict data

consistency and integrity across transactions. ACID compliance is essential in

scenarios where transaction reliability is critical.

•	 Eventual consistency – Basically Available, Soft-state, Eventually consistent):

Updates eventually reach all nodes, allowing for temporary disparities but ensur-

ing eventual data uniformity.

Defining Your Tech Stack96

•	 Availability: This guarantees responses to requests regardless of the state of any single

node, aiming for maximum system uptime and ensuring that the database remains op-

erational across all functional components, even during failures.

•	 Partition tolerance: This is the system’s resilience to network failures that might cause

communication breaks between nodes. Given the inevitability of network issues, partition

tolerance is often deemed essential, dictating that the system must continue to function

despite such problems.

The decision to prioritize consistency, availability, or partition tolerance heavily depends on the

specific requirements of the application and operational environment.

The criteria for choosing storage technologies are as follows:

•	 Data types and structures:

•	 Relational (SQL) vs non-relational (NoSQL): Relational databases are suited for

structured data with clear relationships, while NoSQL is preferred for semi-struc-

tured or unstructured data, providing greater flexibility.

•	 File versus block storage: File storage is ideal for systems requiring direct access.

Block storage is better for scenarios that demand high performance and low-level

data access.

•	 Performance and scalability

•	 Read versus write: Vertical scalability increases processing power on a single

server, while horizontal scalability distributes data across multiple nodes.

•	 Data management

•	 Data consistency: Choose between strict consistency (ACID) and eventual con-

sistency (BASE).

•	 Retention policies: Define how long data should be retained and when it should

be archived or deleted.

•	 Data deduplication and compression: Reduce storage costs and enhance data

transfer efficiency.

•	 Data lifecycle: Is the data write-once or read-many? Can it be moved into cool

or cold storage?

Chapter 4 97

•	 Security and compliance

•	 Data encryption: Ensure data security with encryption at rest and in transit.

•	 Access control and authentication: Implement mechanisms to manage access

to data and authenticate users.

•	 Availability and resilience

•	 High availability: Use mechanisms that ensure data access even during compo-

nent or node failures.

•	 Replication and backup: Develop strategies to preserve data and quickly recover

from failures.

Relational databases
Relational databases are a type of database system that organizes data into structured tables,

where each table consists of rows and columns. The rows represent individual records, while

the columns define the attributes or fields of the data. These tables are interconnected through

relationships, typically using primary and foreign keys, allowing for efficient data retrieval and

complex querying. Relational databases follow the principles of relational algebra and are mainly

related tables.

PostgreSQL
PostgreSQL, often called Postgres, began as the POSTGRES project at the University of California,

Berkeley, in 1986. It was spearheaded by Professor Michael Stonebraker, who aimed to overcome

the limitations of the earlier Ingres database by introducing the concept of an object-relational

system. It has since evolved to support various features from SQL standards and beyond, including

advanced functions, operators, and indexes that allow complex queries, foreign keys, transactions,

and extensive data integrity. PostgreSQL is highly respected in industries that require a robust

database system with complex querying capabilities. It’s particularly popular among tech com-

panies and start-ups due to its open source nature and scalability.

The following are some of its key features:

•	 ACID compliance: Ensures transactional reliability and integrity

•	 Advanced indexing: GIN and GiST indexes support complex queries

•	 Extensions and foreign data wrappers: Allows the database to integrate with other SQL

and NoSQL databases

•	 License: PostgreSQL (similar to MIT or BSD)

Defining Your Tech Stack98

It is best suited for applications that require reliable data integrity, complex queries, and extensive

extensibility. It is ideal for enterprise applications, financial systems, and geographic information

systems where advanced data handling is crucial. Also, the rich ecosystem of PostgreSQL includes

a whole set of extensions that allow us to use it in many different areas – for instance, a vector

database or even an ML platform.

MySQL (MariaDB)
MySQL was created by MySQL AB, a Swedish company founded by David Axmark, Allan Larsson,

and Michael Widenius in 1995. Due to its simplicity and speed, it quickly became the database of

choice for early web applications. It was acquired by Sun Microsystems in 2008, which was, in

turn, bought by Oracle Corporation in 2010. MariaDB was created by the original developers of

MySQL, led by Michael “Monty” Widenius, after concerns over MySQL’s acquisition by Oracle

Corporation in 2010. MariaDB was intended as a drop-in replacement for MySQL, ensuring a

continuation of the project under open source terms. The primary goal was to maintain compat-

ibility with MySQL while also adding new features and improvements that are not available in

MySQL. Predominantly used by small to medium-sized web applications, it’s popular in start-up

environments and among independent developers due to its ease of use and integration with

web development tools.

The following are some of its key features:

•	 ACID compliance: Ensures transactional reliability and integrity

•	 Storage engines: InnoDB for transactional support, MyISAM for high-speed storage with-

out transactions

•	 Replication: Supports master-slave and master-master configurations

•	 License: dual-licensed (GPL + proprietary) for MySQL, GPLv2 for MariaDB

MySQL is favored for web applications, especially those built using PHP, such as WordPress and

other content management systems. It’s suitable for applications with relatively simple database

access patterns and where cost efficiency is prioritized.

MySQL is often selected over PostgreSQL for simpler applications due to its speed and efficiency

with less complex queries. Its widespread use in web development also stems from extensive

community support and a vast array of accessible tools and libraries.

Chapter 4 99

Oracle database
Oracle Database, developed by Oracle Corporation, was one of the first commercial relational

database management systems. Its development began in 1977, and over the decades, it has been

at the forefront of database technologies, often leading innovations that later became industry

standards.

Large enterprises predominantly use Oracle Database, requiring high scalability, reliability, and

security. It’s suitable for critical data management applications in the banking, healthcare, and

government sectors. Over the years, Oracle has consistently led innovations in database tech-

nologies, including advanced transaction control, support for PL/SQL (an extension of SQL),

and enterprise grid computing, which provides high performance and scalability. Oracle leads

in industries where database performance and scalability are critical. It has a strong presence in

both the private and public sectors and is known for its enterprise solutions.

Compared to other databases such as MySQL, PostgreSQL, or even newer NoSQL databases, Or-

acle offers unmatched enterprise features but at a higher cost. Its performance, security features,

and scalability are top-notch, making it the go-to choice for enterprises that need a dependable,

secure, and highly scalable database system.

NoSQL databases
NoSQL databases are non-relational database systems designed to handle large volumes of un-

structured, semi-structured, or rapidly changing data. Unlike traditional relational databases,

NoSQL databases do not rely on fixed schemas or table-based structures, allowing for more

flexible data models such as document, key-value, column-family, or graph formats. This flexi-

bility makes them ideal for applications requiring high scalability, performance, and the ability

to store diverse data types, such as big data, real-time web applications, and distributed systems.

NoSQL databases are often used when handling large datasets, horizontal scaling, or when the

data structure is highly dynamic.

MongoDB
MongoDB was developed by Dwight Merriman, Eliot Horowitz, and Kevin Ryan, who founded

the company 10gen (now MongoDB Inc.) in 2007. It was created to address the limitations of

traditional relational databases by providing a more flexible schema and scaling horizontally,

making it suitable for handling large volumes and varieties of data. MongoDB is popular among

start-ups and enterprises that need to manage large sets of unstructured data. It’s widely used

in the tech industry to develop modern applications requiring a flexible, schema-less data model.

Defining Your Tech Stack100

The following are some of its key features:

•	 BASE data consistency (multi-document ACID with limitations)

•	 Document-oriented storage: Stores data in JSON-like documents with dynamic schemas

•	 Sharding: Supports horizontal scaling through sharding

•	 Replication: Provides high availability with built-in replication

It is ideal for applications that require rapid development, frequent iterations, and handling of

various data types, such as content management systems, e-commerce applications, and re-

al-time analytics.

MongoDB is often chosen over traditional relational databases such as PostgreSQL and MySQL

when applications require schema flexibility, horizontal scalability, and integration with agile

software development practices. It handles large volumes of data efficiently, making it suitable

for big data applications. MongoDB is a key component of the popular MERN stack, a technol-

ogy stack used for building full stack web applications. The MERN stack consists of MongoDB,

Express.js, React, and Node.js, with MongoDB serving as the database layer.

Cassandra
Apache Cassandra was originally developed for inbox search on Facebook in 2008 and then open

sourced. It was designed to handle very large amounts of data distributed across many commodity

servers while providing high availability without a single point of failure. It’s especially favored

in industries where large-scale, fault-tolerant, and responsive systems are critical, such as tele-

communications, financial services, and internet services.

The following are its key features:

•	 Wide-column store: Uses a table structure that allows the nesting of rows within a row

•	 Scalability: Designed to scale horizontally across many servers seamlessly

•	 Fault tolerance: Offers robust fault tolerance through data replication across multiple

nodes

Cassandra is used for applications that require massive scalability and high availability, such as

IoT, web analytics, and real-time monitoring systems.

Cassandra stands out when linear scalability and proven fault tolerance on commodity hardware

or cloud infrastructure are required. It competes with MongoDB in some use cases but generally

handles higher write loads and larger data volumes more effectively.

Chapter 4 101

Redis
Redis, which stands for Remote Dictionary Server, was created by Salvatore Sanfilippo in 2009.

It started as an open source project to solve scaling issues related to real-time web log analysis.

Redis is widely adopted in scenarios where speed and efficiency are crucial, such as gaming, tech,

and financial services, where its performance can drive significant user experience improvements.

Redis recently transitioned to a more restrictive licensing model, moving away from the open

source BSD license to the Server-Side Public License (SSPL) and the Redis Source Available

License (RSAL). This change has led to several forks of Redis by different communities and com-

panies, aiming to maintain a version of Redis under more permissive licensing terms. For example,

the Linux Foundation hosts the Valkey fork, which major tech companies, including Amazon Web

Services, Google Cloud, and Oracle, support.

The following are its key features:

•	 In-memory data structure store: Can handle data structures such as strings, hashes,

lists, sets, and sorted sets

•	 Persistence: Offers options to dump the dataset to disk and append each command to a log

•	 Built-in atomic operations: Supports atomic operations on these data types

Redis clusters are extensively used for caching to enhance the performance of web applications.

They are also used in session management, real-time analytics, and queueing tasks.

AWS DynamoDB
DynamoDB, launched by Amazon Web Services (AWS) in 2012, is a fully managed NoSQL da-

tabase service designed to deliver fast and predictable performance with seamless scalability. It

provides a reliable and cost-efficient solution for handling structured and semi-structured data

across any application scale. As part of the AWS ecosystem, DynamoDB benefits from high inte-

gration with other AWS services, making it a preferred choice for businesses already leveraging

AWS for their cloud solutions. It’s widely adopted across various industries for critical business

functions due to its robust feature set and scalability.

 Redis is often selected for its exceptional speed and flexibility to handle various data

types, making it ideal for tasks such as caching and real-time analysis in environ-

ments where quick data retrieval is critical. It generally complements other databases

such as MongoDB or Cassandra by providing a high-performance layer for hot data.

Defining Your Tech Stack102

The following are some of the key features:

•	 Serverless and fully managed: AWS manages the hardware provisioning, setup, config-

uration, and replication, allowing users to focus on the application

•	 Single-digit millisecond performance: It delivers high-performance read and write

speeds, ideal for real-time and high-throughput applications

•	 Auto scaling: It automatically adjusts capacities to maintain performance as demand

changes, ensuring efficient resource usage

DynamoDB is particularly effective for web, mobile, gaming, ad tech, IoT, and many other appli-

cations that require low-latency data access at any scale. It’s extensively used in scenarios that

demand a robust, highly available, and durable storage system.

DynamoDB often outperforms traditional relational databases in terms of scalability and oper-

ational efficiency, especially in environments that handle large volumes of data. Its serverless

nature removes the need for database administration tasks, making it a more attractive option

for start-ups and enterprises looking to reduce overhead.

Azure Cosmos DB
Azure Cosmos DB is a globally distributed database service from Microsoft Azure, first launched

in 2017. It provides multi-model database capabilities and is designed to offer turnkey global

distribution, seamless scalability, and guaranteed low latency. Cosmos DB targets large-scale

enterprises that need a database solution that can scale globally without compromising on latency

and reliability. Its comprehensive multi-model approach allows it to serve various application

types and use cases.

The following are some of the key features:

•	 Multi-model support: Supports document, key-value, graph, and column-family data

models, all accessible via APIs for SQL, MongoDB, Cassandra, Tables, and Gremlin

•	 Global distribution: Turnkey global distribution allows data to be replicated anywhere

in the world with a click of a button, ensuring data is close to users

•	 Multi-master replication: Multi-master replication provides high availability, allowing

reads and writes anywhere with latency measured in milliseconds

Cosmos DB is ideal for applications requiring massive scale, global distribution, and multi-model

support, such as e-commerce platforms, gaming applications, social networks, and telematics.

Chapter 4 103

Compared to traditional and other NoSQL databases, Cosmos DB offers a unique combination of

global distribution, multi-model support, and high availability features. It is often chosen for its

robust scalability and flexibility, particularly for applications that operate on a global scale and

require real-time access to data across various data models.

Elasticsearch (OpenSearch)
Shay Banon initially created Elasticsearch as a scalable search engine. Its development was driven

by the need for an accessible, quick, and highly scalable search platform. Over the years, it has

evolved to become a comprehensive open source search and analytics engine. Given its versatile

nature, it has been embraced by various sectors for diverse applications.

The following are some of the key features:

•	 Full-text search: Built on the Apache Lucene library, it excels in full-text search

•	 Real-time processing: Capable of near real-time search and analytics

•	 Scalability: Efficiently scales horizontally to handle petabytes of structured and unstruc-

tured data

•	 High availability: Ensures data availability and robustness through data replication and

distributed architecture

Elasticsearch is commonly utilized for application search, website search, enterprise search, log-

ging and log analysis, infrastructure metrics, and container monitoring, among other use cases.

It’s particularly effective in scenarios requiring rapid search responses and real-time analytics,

such as monitoring e-commerce platforms and financial services for fraudulent activity.

Thanks to its powerful search and analytics capabilities, Elasticsearch enjoys widespread adop-

tion across various industries, including technology, finance, retail, and healthcare. Companies

value its speed, scalability, and the depth of its search capabilities, which can be integrated into

almost any application or system for enhanced data insights.

While Elasticsearch competes directly with other search engines such as Solr (also based on

Lucene), it often stands out for its superior scalability and ease of use, particularly in handling

real-time data analysis and visualization when paired with Kibana. Compared to traditional

databases, it provides faster search capabilities and more efficient handling of complex queries

and aggregation.

Defining Your Tech Stack104

As an important update, OpenSearch is a community-driven, open source fork of Elasticsearch

and Kibana initiated by Amazon. It was started following Elasticsearch’s licensing changes, which

moved away from the fully open source model to the SSPL. OpenSearch aims to provide users

with a fully open source and community-driven alternative, maintaining compatibility with

Elasticsearch while evolving independently.

Columnar databases
Columnar databases are a type of database system optimized for reading and writing data by

columns rather than rows, making them highly efficient for analytical queries and large-scale

data processing. Instead of storing an entire row of data together, columnar databases store data

from each column separately. This format enables faster retrieval of specific columns, which is

particularly useful for read-heavy workloads such as data warehousing and business intelligence,

where only a subset of columns is often queried. By reducing the amount of data that needs to

be scanned and leveraging better compression, columnar databases significantly enhance query

performance and storage efficiency compared to traditional row-based databases.

ClickHouse
Developed by Yandex, ClickHouse is an open source columnar database management system

primarily designed for OnLine Analytical Processing (OLAP). It was released as open source in

2016 and is known for its incredible performance with analytical queries. It is preferred in sectors

such as advertising technology, finance, and telecommunications, where rapid query performance

over large datasets is critical.

The following are some of the key features:

•	 Column-oriented DBMS: Stores data by columns, which allows for faster data retrieval

during queries that touch only a subset of columns

•	 Vectorized query execution: Implements vectorized query execution, which significantly

improves query performance

•	 High performance: Particularly optimized for running complex queries against large

datasets

ClickHouse is primarily used for real-time analytical applications, such as high-frequency data

warehousing, large-scale log analysis, and business intelligence applications.

Chapter 4 105

ClickHouse is especially beneficial when query speed is crucial and data is predominantly added

and not frequently updated. It competes with traditional data warehousing solutions by providing

high throughput and real-time query capabilities. It is a popular choice for businesses that need

quick insights from large volumes of data.

Amazon Redshift
Amazon Redshift is a fully managed, petabyte-scale data warehouse service provided by AWS,

first released in 2012. It is designed to handle large-scale data warehousing and analytics ap-

plications and is popular among businesses that require quick insights from their massive data

stores. Due to its scalability, cost-effectiveness, and integration with other AWS services, Amazon

Redshift is extensively used by organizations ranging from start-ups to large enterprises. It holds

a significant market presence in data warehousing, especially for those already entrenched in

the AWS ecosystem.

The following are some of the key features:

•	 Column-oriented storage: Redshift is based on a column-oriented DBMS, which opti-

mizes query speed by effectively storing data in columns and only reading the necessary

columns during a query

•	 Massively Parallel Processing (MPP): It distributes data and the query load across all

nodes, enabling high-performance computations on large datasets

•	 Redshift Spectrum: This extends Redshift’s capabilities to directly query exabytes of

unstructured data in S3 without loading or transforming the data, providing seamless

integration with the existing Redshift environment

Redshift is tailored for complex querying and analysis of large datasets. It is used widely in data

warehousing, business intelligence, and log analysis, where high query performance is crucial.

It serves as the backbone for analytics applications across diverse sectors, including financial

services, healthcare, and media. In AWS infrastructure, Amazon Athena can be considered a

replacement for Redshift.

Redshift’s integration with Redshift Spectrum allows users to perform SQL queries across their

data lake stored in Amazon S3, providing a powerful feature that differentiates it from other

columnar databases such as ClickHouse. It is preferred for scenarios where the integration of

cloud storage and database services can provide enhanced flexibility and scalability, especially

in handling varied and extensive data workloads. The capability to handle both structured and

semi-structured data without prior transformation makes it a robust choice for enterprises seeking

to leverage data for strategic insights.

Defining Your Tech Stack106

Redshift offers an appealing solution for companies looking to scale their analytics capabilities

rapidly while maintaining cost-efficiency and high performance. Its continuous improvements

and updates from AWS ensure that it remains a strong competitor in the fast-evolving data

technology landscape.

Graph databases
Graph databases are a type of NoSQL database designed to represent and store data in the form

of nodes (entities) and edges (relationships), allowing for efficient modeling and querying of

complex, interconnected data. Each node in a graph database represents an object (such as a

person, place, or thing), and edges define the relationships or connections between these nodes.

This structure makes graph databases ideal for applications where understanding relationships

and patterns between data points is critical, such as social networks, recommendation systems,

fraud detection, and network topology analysis. Unlike traditional relational databases, graph

databases excel at quickly traversing and querying intricate networks of data, offering more

natural and intuitive ways to represent and explore relationships.

Neo4j
Neo4j was developed by Neo Technology, founded by Emil Efrem. It was released in 2007 as

the first commercially available graph database, using graph structures with nodes, edges, and

properties to represent and store data. It is widely adopted in industries such as social network-

ing, e-commerce, and banking, where complex relationships between data points need to be

efficiently managed and queried.

The following are some of the key features:

•	 Graph data model: Nodes represent entities, and edges represent relationships between

entities, each with associated properties

•	 Cypher query language: It uses a declarative query language specifically designed for

handling graphs

•	 ACID transactions: It supports full ACID capabilities for transactional applications

Neo4j is extensively used for recommendations, fraud detection, graph-based search, and net-

work and IT operations.

Neo4j stands out in scenarios requiring the analysis of interconnections within data, such as social

networks or recommendation engines. Its graph data model provides significant advantages over

relational databases for deeply connected data applications.

Chapter 4 107

Amazon Neptune
Amazon Neptune is a fully managed graph database service offered by AWS, which was launched

in 2017. It is designed to store and navigate highly connected data, making it an ideal choice for

applications that require complex relationship queries. Neptune supports both Property Graphs

and Resource Description Framework (RDF), allowing it to handle various graph use cases.

The following are some of the key features:

•	 Graph data models: Supports two graph models: Property Graphs using the open source

Apache TinkerPop Gremlin, and RDF using SPARQL—a powerful graph query language

•	 Fully managed: As a managed service, Neptune handles much of the necessary mainte-

nance tasks, such as hardware provisioning, setup, configuration, and backups

•	 Highly scalable and durable: Built to offer high availability, it replicates six copies of data

across three Availability Zones and continuously backs up data to Amazon S3, which is

also designed for high durability

Amazon Neptune is used in a variety of applications where relationships and connections are

crucial. Typical use cases include knowledge graphs, fraud detection, recommendation systems,

social networking, and network security. Its ability to quickly process complex queries involving

deeply connected data makes it particularly useful in these areas.

Neptune has been increasingly adopted by industries that require efficient processing of connec-

tion-heavy data, such as financial services for real-time fraud detection systems and social media

platforms for improving user experience through better personalization and recommendations.

Compared to Neo4j, Neptune offers tight integration with the AWS ecosystem, which can be a

decisive factor for companies that are already extensively leveraging AWS services. This integra-

tion simplifies operations such as data import/export and scaling.

Neptune enhances machine learning workflows by enabling efficient querying of relationships

within large datasets, which is essential for features such as real-time recommendation systems

and predictive modeling based on social connections or other complex relationship data. Its in-

tegration with AWS machine learning services and tools streamlines the ML pipeline, allowing

developers to create more intelligent, context-aware applications.

Defining Your Tech Stack108

Storage
The main difference between databases and storage systems (such as file, block, and object storage)

lies in their functionality and purpose. Databases are designed to manage and query structured

or semi-structured data efficiently, offering features such as indexing, transactions, and complex

queries. In contrast, storage systems are used for storing raw data without providing advanced

querying capabilities. Storage systems are primarily used for unstructured data, while databases

focus on organizing and managing data for easy retrieval and manipulation.

File storage
File storage systems such as Network Attached Storage (NAS) have been integral to networked

data management since the early days of computing, facilitating shared access to files across net-

works. Solutions such as NAS, Google Cloud Filestore, Azure Files, and Amazon EFS are prevalent

in both enterprise and SMB markets, offering cost-effective and efficient solutions for managed

file sharing.

The following are some of the key features:

•	 Hierarchical structure: Data is organized in files and folders, mimicking the familiar

operating system structure

•	 Protocol accessibility: Commonly accessed through standard protocols such as Network

File System (NFS) and Server Message Block (SMB)

•	 Concurrency and locking: Supports multiple access with mechanisms to lock files during

use, preventing conflicts

It is ideal for applications requiring file sharing among multiple users or systems, such as in cor-

porate environments for document storage and collaboration, multimedia content repositories,

and environments where data needs to be easily navigable and manageable.

File storage is preferred over block storage when direct file access and shared access are necessary.

It offers a more intuitive management system compared to the raw storage provided by block

storage. File storage is not as scalable as object storage for web-scale applications but provides

better performance for directory-intensive operations.

Block storage
Block storage is foundational to storage architecture. Early computer systems utilized block de-

vices such as hard drives. It is designed to handle structured data storage with high efficiency

and performance.

Chapter 4 109

The following are some of the key features:

•	 Raw storage blocks: Data is stored in fixed-sized blocks, which are managed independent-

ly, allowing for flexible configurations

•	 Low-level access: Offers low-level control of storage, which can be formatted with the

required file system

•	 High performance: Suited for operations that require high I/O throughput and low latency

Block storage is widely used for database hosting, critical applications requiring high performance,

and any scenario where data needs to be frequently accessed and modified with high throughput,

such as transactional systems. It is prominent in environments where performance and data

reliability are critical, such as financial services and high-performance computing applications.

Block storage provides performance advantages over file and object storage in environments that

require frequent data manipulation and access at low latencies. It is typically used in conjunction

with file storage or as underlying storage for databases and high-performance applications.

Object storage
Object storage technology emerged as a response to the growing need for scalable and cost-ef-

fective solutions to manage vast amounts of unstructured data. Services such as Amazon S3,

introduced by Amazon in 2006, have set industry standards for object storage, emphasizing

accessibility and durability.

Object storage is suitable for multimedia files, backups, big data collections, and data serving

applications that require extensive data retrieval capabilities, such as digital media streaming

and content distribution networks. Prominent services such as Amazon S3, Google Cloud Storage,

and Microsoft Azure Blob Storage dominate the market, offering high durability and availability,

which are crucial for enterprises and cloud-native applications.

Object storage offers superior scalability and a simpler data management model than file and

block storage, making it ideal for cloud storage solutions where high volumes of unstructured

data are common. It is less suited for applications that require low latency and high transaction

rates, where block or file storage might be more efficient.

Distributed log storage
Distributed log storage systems such as Apache Kafka and Amazon Kinesis are designed to effi-

ciently handle large volumes of data streams. These platforms are fundamentally built to provide

robust, scalable solutions for real-time data processing needs across various applications. Here’s

an in-depth look at each:

Defining Your Tech Stack110

Apache Kafka
Apache Kafka was originally developed by LinkedIn in 2011 and later became part of the Apache

Software Foundation. Kafka was designed to address the high-throughput, low-latency needs for

handling real-time data feeds at LinkedIn. Its robustness, scalability, and fault tolerance quickly

gained popularity. Kafka is a critical component in the tech stacks of many large enterprises, es-

pecially in sectors such as finance, retail, telecommunications, and tech start-ups. Its ability to

handle high volumes of data makes it indispensable for organizations dealing with large-scale,

real-time data needs.

The following are some of the key features:

•	 Log-based system: Stores streams of records in categories known as topics

•	 Scalability: Easily scales horizontally by adding more brokers in the Kafka cluster

•	 Fault tolerance: Uses distributed replication to prevent data loss

•	 High throughput: Can process millions of messages per second

•	 Low latency: Ensures real-time performance in data processing

Kafka is widely used in event-driven architectures, real-time analytics, monitoring systems, and

as an intermediary for microservices communications. It excels in scenarios requiring reliable and

real-time data exchange, such as financial transactions, IoT data streams, and operational metrics.

Compared to traditional messaging systems, Kafka provides greater durability and scalability,

making it more suitable for applications that require robust data handling capabilities. Its dis-

tributed nature and partitioning model allow it to outperform many other data throughput and

storage systems.

Amazon Kinesis
Amazon Kinesis was launched by AWS in 2013. It was created to make it easier for developers to

load and analyze streaming data on AWS, thereby enabling them to build real-time applications

quickly and efficiently.

The following are some of the key features:

•	 Stream-based data handling: Allows for collecting, processing, and the analysis of re-

al-time data streams

•	 Integration with AWS: Seamlessly integrates with other AWS services for analytics, stor-

age, and machine learning

Chapter 4 111

•	 Scalability: Automatically scales to match the volume and throughput of data

•	 Data sharding: Data streams are divided into shards, each capable of handling up to 1

MB/sec or 1,000 messages per second

Amazon Kinesis is ideal for real-time applications such as logging and event data collection, an-

alytics, machine learning model inference, and more. It is particularly beneficial for AWS-centric

environments that require tight integration with other AWS services.

Kinesis is primarily used by businesses that are already invested in the AWS ecosystem. Its in-

tegration with AWS makes it a preferred choice for those leveraging other AWS services such as

Lambda, S3, Redshift, and AWS analytics tools.

While both Kafka and Kinesis offer robust solutions for handling real-time data streams, Kine-

sis provides tighter integration with AWS, which can be a significant advantage for companies

operating within the AWS cloud. On the other hand, Kafka offers more flexibility in terms of de-

ployment options and can be used across multiple cloud providers or on-premises environments.

Apache Pulsar
Apache Pulsar is a cloud-native, distributed messaging and streaming platform designed for

high-performance, real-time data processing. It supports both message queuing and publish-sub-

scribe models, making it suitable for a wide range of applications, including real-time analytics,

log aggregation, and machine learning inference.

Pulsar’s architecture separates the serving and storage layers, allowing for seamless scalability

and high availability. It offers features such as multi-tenancy, geo-replication, and tiered storage,

enabling organizations to build robust, scalable data pipelines.

While Amazon Kinesis is a fully managed service tightly integrated with the AWS ecosystem,

Apache Pulsar provides more flexibility in deployment options, including on-premises, cloud, and

hybrid environments. This makes Pulsar a compelling choice for organizations seeking an open

source, vendor-neutral solution for real-time data streaming.

Feature Apache Kafka Amazon Kinesis Apache Pulsar

Deployment

Model

Open source;

deployable in on-

premises, cloud, or

hybrid environments

Fully managed service

within the AWS

ecosystem

Open source;

deployable in on-

premises, cloud, or

hybrid environments

Defining Your Tech Stack112

Feature Apache Kafka Amazon Kinesis Apache Pulsar

Integration Integrates with

various systems

such as Apache Flink,

Spark, and Hadoop

Seamless integration

with AWS services such

as Lambda, S3, and

Redshift

Integrates with

various systems such

as Apache Flink, Spark,

and Hadoop

Scalability Horizontally scalable

with partitioned

topics

Scales by provisioning

shards; limited by AWS

account shard limits

Horizontally scalable

with separate serving

and storage layers

Geo-Replication Requires

additional tools

or configurations

for cross-region

replication

Requires additional

configuration and

services for cross-region

replication

Built-in support for

geo-replication across

data centers

Use Cases Suitable for diverse

environments; ideal

for organizations

seeking flexibility

Best for AWS-centric

applications requiring

tight integration with

AWS services

Suitable for diverse

environments; ideal for

organizations seeking

flexibility

Vector databases
Vector databases form the retrieval part of modern RAG, recommendation, and similarity ana-

lytics pipelines. They differ less in what they store (high‑dimensional embeddings) than in how

they index, scale, and integrate. The following profiles give a concise but historically grounded

view of seven widely used engines – Pinecone, Weaviate, Qdrant, OpenSearch, PostgreSQL and

pgvector, and FAISS – highlighting release milestones, architectural choices, typical workloads

and a few lesser‑known facts that illuminate why each tool thrives in its niche.

Pinecone
Pinecone emerged from stealth in January 2021, launching the first “vector database‑as‑a‑service.”

Its serverless architecture, unveiled in public preview in late 2023 and GA in May 2024, splits

compute‑heavy HNSW/PQ indexes from low‑cost object storage, so clusters (“pods”) elastically

scale from thousands to billions of vectors in seconds.

Use cases span RAG chatbots, real‑time personalization, and fraud signal search, and the platform

counts Microsoft, Notion, and Plaid among thousands of adopters.

Chapter 4 113

Weaviate
Written in Go/Rust, Weaviate couples HNSW with lexical BM25 in a single hybrid query and ships

pluggable transformer, reranker, and generative modules out of the box.

A managed, multi‑tenant cloud and new Weaviate Agents SDK (March 2025) push it toward full

stack AI backend status.

Developers reach for Weaviate when they need OSS‑friendly licenses, module extensibility, or

billions‑of‑vector scale without relinquishing on‑prem control.

Qdrant
Built entirely in Rust, Qdrant prioritizes raw throughput and adds payload‑level boolean filtering,

disk offload, and online PQ compression.

A January 2024 Series A brought $28 million to accelerate enterprise features.

Teams pick Qdrant for high‑write IoT streams or multi‑facet RAG where attribute filtering is as

important as vector similarity.

OpenSearch k-NN
AWS announced the OpenSearch project in April 2021 as an Apache‑2.0 fork of Elasticsearch/

Kibana and shipped v1.0 GA three months later.

The k‑NN plugin integrates HNSW, disk‑optimized graph indexes and byte‑vector quantization

directly into Lucene shards, inheriting all OpenSearch cluster amenities.

Release 2.17 (Sept 2024) added asynchronous batch ingestion and binary quantization for cost‑ef-

ficient billion‑scale search.

Organizations already running the ELK/observability stack adopt k‑NN to layer semantic retrieval

or hybrid BM25 and vector scoring without new infrastructure.

PostgreSQL and pgvector
The pgvector extension debuted on April 20, 2021 and has since added IVF and HNSW ANN in-

dexes, as well as half‑precision and sparse vector types.

Version 0.8 (Nov 2024) improved plan‑costing, so Postgres chooses exact or ANN indexes dynam-

ically, and major clouds now offer pgvector‑enabled Postgres in managed form.

For workloads under ~50 million embeddings, engineers enjoy transactional consistency, rich

SQL filtering, and zero new ops surface.

Defining Your Tech Stack114

FAISS
Facebook AI Research released FAISS in March 2017, touting 8.5× faster GPU ANN search than

the prior state of the art.

It bundles IVF‑Flat/PQ, HNSW, and clustering and remains the de facto baseline for offline ex-

perimentation or as an embedded engine inside other DBs.

Many SaaS stores (including early Pinecone and Milvus versions) started as FAISS wrappers before

adding distributed control planes.

RAG storage engine selection
In our framework, we can highlight three important technological components we can consider

VectorStore components, which enable vector similarity algorithms.

To design an effective system based on your description of technological needs and challenges,

considering various components within the checklist will help ensure the selection of the most

appropriate technologies. Your inquiry covers the choice of technology for embeddings and vec-

tor storage, which is crucial for implementing search and analytics functions in the proposed

system. Here is how you can structure the decision-making process. We deliberately limit our

comparison to Open Source Software (OSS) options in order to exclude pricing and vendor lock-

in considerations from the evaluation. This ensures a fair, implementation-focused comparison

based solely on architectural and technical capabilities.

OpenSearch PostgreSQL and pg_vector FAISS

Scalability
High (distributed

architecture)***

Limited (better for smaller

deployments)**

Limited (FAISS itself

scales to 1 billion plus

on GPU/CPU, but

you must shard or

distribute the index)*

Performance

Fast k-NN searches,

high query

throughput***

Good for small-scale

vector searches**

Highly efficient for NN

searches***

Integration

Seamless with

existing stack (same

DSL, security model,

and observability

stack as the rest of

OpenSearch)***

Native database

integration***

Limited distributed

capabilities (it is a

C++/Python library; no

built‑in cluster, schema,

or ACLs)

Chapter 4 115

OpenSearch PostgreSQL and pg_vector FAISS

Operational

Complexity

Higher (you manage

shards, replicas, and

JVM tuning; serverless

reduces that but not to

zero)***

Lower (standard DB

management)**

Lower for the single

system and higher for

the clusters *

Use Case Fit
Large-scale vector

storage and retrieval***

Small to medium

deployments**

Standalone vector

search*

Distributed

Capabilities

Native sharding,

cross‑AZ replication,

serverless multi‑worker

Limited (sharding)
Weak (no out‑of‑box

distribution)

Final

Decision
Selected Rejected Rejected

By methodically evaluating each aspect according to this structured approach, you can make an

informed decision that aligns technological choices with business objectives and operational

requirements.

Transport and contract definition
Selecting the right transport technology is critical for ensuring a system’s efficiency, scalability,

and reliability. The transport layer plays a key role in handling data transmission, minimizing

latency, and maintaining secure and consistent communication across diverse network environ-

ments. When evaluating transport options, factors such as throughput, fault tolerance, security,

and protocol compatibility must be considered to optimize system performance.

The following criteria outline essential aspects to guide the selection of transport technologies:

•	 Throughput and scalability: The transport must handle the current data volumes and

scale effectively as demands increase. This ensures that the system can grow without

experiencing performance bottlenecks.

•	 Latency: The transport’s ability to minimize delay is crucial for applications where timing

is critical, such as those requiring real-time interactions. This impacts user experience

and operational efficiency.

•	 Reliability and fault tolerance: The chosen transport method must ensure consistent

data delivery despite network issues, with robust recovery solutions to maintain service

continuity.

Defining Your Tech Stack116

•	 Support for various network topologies: Systems that operate globally or across varied

network environments need to be adaptable to different network layouts, including dis-

persed geographical locations.

•	 Data transmission security: Protecting data integrity and confidentiality during transit is

essential, particularly for applications handling sensitive or regulatory-bound information.

•	 Standards and protocol support: Compatibility with established protocols ensures the

transport can integrate smoothly with existing technologies and infrastructure, facilitating

broader system integration.

•	 Flow control and congestion management: Effective mechanisms must be in place to

manage data flow, prevent network congestion, and ensure reliable data transmission

without loss.

Choosing the right serialization format involves considering how well it handles converting

data quickly, its ability to manage changes over time, and how easily it can be integrated into

the system for smooth operation and maintenance. Here are the key considerations for selecting

serialization formats:

•	 Contracts and boundaries: Design-time (described in the code) or runtime (can be val-

idated in running applications)

•	 Serialization/deserialization efficiency: Formats should facilitate rapid conversion to

and from data structures, minimizing latency and processing times, which is critical for

maintaining high system performance

•	 Data compression: Efficient compression reduces the volume of data transmitted and

stored, conserving bandwidth and storage resources, which is vital for cost-effective

scaling

•	 Versioning and data migration: Versioning support is crucial for accommodating changes

in the data schema without disrupting existing operations, facilitating smooth transitions

and updates

•	 Development tool and schema registry integration: Strong support from commonly used

development tools enhances developer productivity and eases maintenance, contributing

to more robust and error-free implementations.

 This taxonomy is quite conditional because nothing prevents you from building

communication via a database or a storage (so-called shared database), or consid-

ering distributed log storage, such as Kafka, as one of the transport options.

Chapter 4 117

Shared memory
Shared memory is a method of inter-process communication (IPC) where multiple processes

access a common memory space. It’s one of the fastest IPC methods because it allows direct data

exchange without copying or moving data unnecessarily. This section will outline the specifics of

using shared memory as a transport medium, its application scenarios, and considerations for its

use in distributed systems. Applicable in monolithic architectures, especially those running on

a single machine, shared memory is ideal for high-speed data exchange between components or

modules within the same application. Since all components are part of a single application stack,

shared memory can be effectively used without the overhead of network communications. Also,

it is beneficial for High-Performance Computing (HPC) applications, such as simulations and

complex calculations that require fast access to large datasets, which can benefit significantly

from shared memory. It allows multiple processors to work on different parts of a problem si-

multaneously while accessing the same data in memory.

The following are some of the benefits:

•	 Low latency and high throughput: Shared memory provides a mechanism for very low-la-

tency communication and high data throughput because it eliminates the need for data

to be copied between the sender and receiver.

•	 Efficiency: There are no network protocol stacks to traverse, reducing the CPU overhead

required for data transfer.

The following are some of the limitations and challenges:

•	 Scalability: Scalability is limited by the hardware it runs on. Shared memory is generally

confined to a single machine, so it doesn’t scale well across distributed systems without

additional synchronization mechanisms.

•	 Concurrency control: Managing access to shared memory can be complex. Mechanisms

such as semaphores, mutexes, or locks are necessary to prevent race conditions and en-

sure data integrity.

•	 Homogeneity requirement: It works best in environments where all processes are homo-

geneously designed to interact with the shared memory segment, requiring a consistent

approach to memory management across all interacting processes.

Defining Your Tech Stack118

•	 Dynamic contracts: In shared memory setups, the interaction contracts—defined as the

agreed-upon structure and method for accessing shared data—are inherently flexible. This

flexibility allows components to adapt their data exchange methods as the application

evolves. However, this can also introduce complexity and potential inconsistencies if not

managed correctly. Since the structures and data access patterns are not enforced by rigid

protocols (unlike network communications), they can be modified more freely. This is

both an advantage and a risk, as it requires rigorous coordination and documentation to

ensure all components interact correctly without data corruption.

Networking in distributed systems
Networking is the backbone of communication in distributed systems, enabling different compo-

nents and applications to exchange data over various physical and virtual channels. This section

explores how networking can be effectively used in distributed environments, similar to how

shared memory is employed in single-system architectures.

Characteristics and use cases
•	 Distributed applications: Networking is crucial for applications that are spread across

multiple physical servers or cloud environments, where components must communicate

over a network

•	 Service-oriented architecture: This enables services to communicate through network

calls, which can be either synchronous or asynchronous

•	 Highly available systems: Networks enable the replication of data across geographically

dispersed data centers, enhancing the availability and resilience of systems.

Benefits
•	 Scalability: Networking allows a system to scale out across multiple machines and loca-

tions, handling more requests by adding more resources

•	 Flexibility: Network configurations can be adjusted as requirements change, without the

need for significant hardware changes

•	 Interoperability: Different systems and applications, possibly written in different pro-

gramming languages or running on different platforms, can communicate seamlessly

Limitations and challenges
•	 Latency: Network calls are significantly slower than local calls, and network latency can

become a bottleneck in performance-sensitive applications

Chapter 4 119

•	 Complexity: Managing network configurations, handling network failures, and optimizing

network performance add complexity to system design and operation

•	 Security risks: Data transmitted over networks can be intercepted, requiring robust en-

cryption and authentication mechanisms to secure communications

Key considerations
•	 Network Topology: The design of the network, including its layout and the protocols

used, impacts performance and security.

•	 Error Handling: Mechanisms must be in place to detect, report, and recover from network

failures to maintain system reliability.

•	 Performance Optimization: Techniques such as load balancing and traffic shaping are

essential to manage the network load effectively.

Message brokers
Message brokers are intermediary platforms that facilitate message exchange between different

applications and services. They support various messaging patterns, including queueing, top-

ic-based publish/subscribe, and request/response interactions.

Characteristics and use cases
•	 Integration of heterogeneous systems: This allows different systems, potentially using

different technologies, to communicate via a common messaging format and protocol

•	 Asynchronous processing: Messages can be stored in queues and processed asynchro-

nously, which is critical for operations that require decoupling of processing from message

reception

•	 Load balancing: This distributes incoming messages across multiple workers or services,

balancing the load and improving the throughput of processing

Benefits
•	 Reliability: This provides guaranteed delivery mechanisms, ensuring messages are not

lost in transit between sender and receiver

•	 Scalability: This facilitates the scaling of applications by managing communication across

multiple instances of services or databases

•	 Isolation: This reduces direct dependencies between communicating components, iso-

lating failures and improving system resilience

Defining Your Tech Stack120

Limitations and challenges
•	 Complexity of setup and management: Setting up and maintaining a message broker

can be complex and resource-intensive

•	 Performance bottlenecks: High volumes of messages can lead to bottlenecks if the broker

is not appropriately scaled or configured

•	 Security: Ensuring secure transmission of sensitive data through brokers requires en-

cryption and secure configuration practices

Key considerations
•	 Broker choice: Selection of the broker technology should be based on the specific require-

ments of latency, throughput, and feature support

•	 System monitoring and maintenance: Continuous monitoring of the broker’s perfor-

mance and regular updates to its configuration and software to handle evolving system

demands

These sections on networking, pub/sub systems, and message brokers outline foundational con-

cepts and considerations that are crucial for designing robust distributed systems and commu-

nication strategies.

Pub/sub systems
Publish/subscribe (pub/sub) systems are a type of message-oriented middleware that provides

a flexible communication paradigm through asynchronous message passing. This model de-

couples message producers (publishers) from message consumers (subscribers), enhancing the

modularity and scalability of applications.

Characteristics and use cases
•	 Event-driven architectures: Ideal for applications where actions are triggered by events,

such as real-time notifications and updates

•	 Microservices communication: Facilitates the communication among loosely coupled

microservices by allowing services to publish events without knowing the subscribers

•	 Scalability: Easily scales out to handle large numbers of messages and subscribers by

distributing the load across multiple brokers or nodes

Chapter 4 121

Benefits
•	 Decoupling: Publishers and subscribers do not need to know about each other, which

simplifies component integration and system maintenance

•	 Asynchronicity: Allows systems to process messages at their own pace, improving re-

sponsiveness and overall system efficiency

•	 Fault tolerance: Pub/sub systems can be designed to handle failures gracefully, ensuring

that message delivery can resume or be rerouted in the event of a node failure

 Limitations and challenges
•	 Message overhead: Managing a large volume of messages can lead to overhead in terms

of performance and resource usage

•	 Complexity of message management: Ensuring the correct order and delivery of mes-

sages can be challenging, especially in systems with stringent consistency requirements

•	 Dependency on brokers: The reliability of the entire system can depend on the brokers,

which introduces a single point of failure unless redundancies are built into the system

 Key considerations
•	 Broker performance and reliability: The choice of broker software and its configuration

significantly impacts the performance and reliability of the pub/sub system

•	 Message durability and retention policies: Configurations that determine how long

messages are stored and how failures in delivery are handled

•	 Subscription management: Efficient management of subscriptions, including adding,

removing, and updating subscribers without disrupting the message flow

Serialization formats: defining interaction contracts
Serialization formats play a pivotal role in software development by establishing how data is

structured, transported, and reconstructed across various components and systems. By defin-

ing clear interaction contracts, these formats ensure consistent data integrity and compatibility

across different environments.

JavaScript Object Notation (JSON)
JSON is renowned for its readability and simplicity, which makes it highly favored for manual

editing and debugging. JSON is predominantly utilized in web APIs and configuration files, where

lightweight data exchange is necessary. It is particularly useful in environments that prioritize

developer accessibility, such as settings where quick adjustments to data are common.

Defining Your Tech Stack122

Let’s look at the following example, where we have configured a user interface setting or trans-

mitted data from a client to a server:

{

 "name": "John Doe",

 "age": 30,

 "isAdmin": false

}

Protocol Buffers (Protobuf)
Optimized performance: Developed by Google, Protobuf is designed to serialize structured data

efficiently. Its binary format not only minimizes payload size but also enhances processing speed.

Protobuf is extensively used in microservices communication, mobile applications, and perfor-

mance-critical applications such as real-time data streaming, where minimal latency is crucial.

Now, consider a case where we need to define and serialize a simple message in Protobuf:

message User {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

}

Apache Avro
Schema evolution: Avro supports forward and backward compatibility, crucial for systems where

schemas need to evolve over time without disrupting operations. Integrated with big data plat-

forms such as Apache Hadoop and Apache Kafka, Avro is suited for distributed data storage and

messaging systems where schemas are embedded with the data, ensuring proper serialization

and deserialization.

Example: An Avro schema for a user record might look like this:

{

 "type": "record",

 "name": "User",

 "fields" : [

 {"name": "name", "type": "string"},

 {"name": "age", "type": "int"}

]

}

Chapter 4 123

MessagePack
MessagePack is a binary serialization format that acts as a compact, efficient alternative to JSON,

reducing CPU and bandwidth usage. It is used in mobile apps and real-time applications that

require efficient and compact data exchange, such as gaming and IoT applications.

Example: Encoding a simple dictionary or object with MessagePack might look like this when

visualized:

82 A3 66 6F 6F A3 62 61 72 A3 62 61 7A A3 71 75 78

Communication protocols (API styles)
We shall cover the following communication protocols:

•	 REST

•	 GraphQL

REST
Representational State Transfer (REST) is a software architectural style that defines constraints

for creating web services. Web services that conform to the REST architectural style, termed REST-

ful web services, provide interoperability between computer systems on the internet. RESTful

web services allow requesting systems to access and manipulate textual representations of web

resources using a uniform, predefined set of stateless operations. REST is based on several key

principles that guide the design and development of the architecture of RESTful systems:

•	 Statelessness: Each request from a client to a server must contain all the information the

server needs to understand and process the request. The server cannot store context from

one request to another; all context is stored on the client.

•	 Client-server architecture: The client and the server should be independent of each other,

allowing both to evolve independently without any dependency on each other.

•	 Uniform interface: To obtain uniformity throughout the application, REST has defined

three interface constraints:

•	 Resource identification in requests: Individual resources are identified in requests

using URIs. The resources are conceptually separate from the representations

returned to the client.

•	 Resource manipulation through representations: When a client holds a represen-

tation of a resource, including any metadata attached, it has enough information

to modify or delete the resource on the server, provided it has permission to do so.

Defining Your Tech Stack124

•	 Self-descriptive messages: Each message includes enough information to describe

how to process the message.

Use cases
•	 Web APIs: The most common use of REST is in developing web APIs, which expose specific

software functions and data to external applications in a secure, reliable, and documented

way. These APIs are used extensively in web services and applications.

•	 Mobile backends: REST is used to build backends for mobile applications, providing data

and services that mobile applications can consume and manipulate. Given its stateless

nature, REST is well-suited to the sporadic connectivity and scalability requirements of

mobile applications.

•	 Single-page applications (SPAs): Many modern web applications are structured around

SPAs, where RESTful APIs are utilized to handle data interchange between the server and

the web application running in the client’s browser.

•	 Microservices: In microservices architectures, REST is used to design lightweight services

that interact through clear, well-defined interfaces.

REST’s use of standard HTTP methods to manage resources makes it a simple yet powerful sys-

tem for building APIs that are easy to understand and use. The scalability provided by stateless

interactions, combined with the ability to handle data in multiple formats and detailed API doc-

umentation through tools such as Swagger or OpenAPI, makes REST a robust choice for public

and internal API designs.

Imagine an online bookstore where users can browse books, add them to their cart, and check

out. Here’s how a RESTful API might be designed to support these operations:

1.	 List all books: `GET /books`

2.	 Get details about a specific book: `GET /books/{bookId}`

3.	 Add a new book: `POST /books`

4.	 Update existing book details: `PUT /books/{bookId}`

5.	 Delete a book: `DELETE /books/{bookId}`

Using standard HTTP methods, the client interacts with the bookstore:

The GET request is used to retrieve a resource or a list of resources – for example, to retrieve details

for a specific book:

 GET /books/123

Chapter 4 125

This request might return a JSON representation of the book:

 {

 "bookId": "123",

 "title": "The Great Gatsby",

 "author": "F. Scott Fitzgerald",

 "price": "$15.20"

 }

The POST request creates a new resource. To add a new book to the catalog, we need to send data

like this:

 POST /books

The request body contains the data of the new book:

 {

 "title": "1984",

 "author": "George Orwell",

 "price": "$18.00"

 }

The server responds with the URI of the newly created book:

 HTTP/1.1 201 Created

 Location: /books/124

The PUT request updates an existing resource fully – for example, changing the price of a book:

 PUT /books/123

The request body contains the updated data:

 {

 "bookId": "123",

 "title": "The Great Gatsby",

 "author": "F. Scott Fitzgerald",

 "price": "$12.99"

 }

Finally, the DELETE method removes a resource – for example, deleting a book:

 DELETE /books/123

Defining Your Tech Stack126

GraphQL
GraphQL is a query language for APIs and a runtime for executing those queries by using a type

system you define for your data. Developed by Facebook in 2012 and released publicly in 2015,

GraphQL has emerged as a powerful alternative to REST for designing more efficient and flexible

APIs.

Key principles of GraphQL
•	 Strongly typed schema: GraphQL requires defining a schema using a Schema Definition

Language (SDL). This schema serves as the contract between the client and the server,

ensuring that the data interactions follow a predefined structure.

•	 Single endpoint: Unlike REST, which uses multiple endpoints to access data, GraphQL

APIs typically expose a single endpoint through which clients can make all their requests.

•	 Client-specified queries: Clients have the freedom to request exactly what they need –

nothing more and nothing less. This reduces the bandwidth and processing power required,

as the server only sends the data requested.

•	 Hierarchical data structure: The shape of a GraphQL query closely matches the resulting

data, making it easier to predict the outcome of a query.

•	 Introspective: GraphQL supports introspection, allowing clients to query the API for

details about the API schema. This feature facilitates building helpful API browsing tools

and automating some types of UIs.

Benefits
•	 Efficiency: Reduces the need for multiple round trips between client and server, fetching

all required data in a single request.

•	 Flexibility: Clients can tailor requests to their specific needs, fetching data from multiple

resources in a single request.

•	 Strongly-typed interface: The schema serves as a contract, which can help prevent run-

time errors.

Limitations and challenges
•	 Performance concerns: Complex queries can lead to performance issues if not properly

managed, potentially straining the server by requesting deep nested structures.

•	 Caching complexity: Traditional HTTP caching mechanisms are less effective because of

the way GraphQL queries are structured, requiring more sophisticated caching strategies

on the client or intermediate layers.

Chapter 4 127

•	 Rate limiting and complexity analysis: Protecting the server from resource-intensive

queries can be more challenging than REST.

Use cases
•	 Complex systems: Systems that require interacting with multiple data sources in a single

query can benefit from GraphQL’s ability to aggregate data.

•	 Rapid iteration on frontends: Frontend teams can adjust data requirements on the fly

without needing backend adjustments.

•	 Mobile applications: Mobile applications operating in environments with fluctuating

network conditions benefit from GraphQL’s ability to minimize data loads by allowing

clients to specify exactly what data is needed.

Imagine a social media platform where users can post articles, comment, and like posts. Here’s

how a GraphQL API might support these operations:

query {

 getPost(id: "1") {

 title

 author {

 name

 profilePic

 }

 comments {

 text

 author {

 name

 }

 }

 }

}

This query fetches the post with ID "1", including the title, author’s name, and profile picture,

and the text of comments, along with the names of their authors:

mutation {

 createPost(title: "New GraphQL Article", content: "Content of the
article", authorId: "2") {

 id

 title

Defining Your Tech Stack128

 content

 }

}

This mutation creates a new post, returning the new post’s ID, title, and content:

subscription {

 postLiked(postId: "1") {

 id

 title

 likes

 }

}

In production, you usually supply argument values via GraphQL variables:

mutation CreatePost($title:String!,$content:String!,$authorId:ID!){

 createPost(title:$title, content:$content, authorId:$authorId){

 id

 title

 content

 }

}

This is invoked with a JSON payload such as {“title”:”Hello”,”content”:”...”,”authorId”:”2”} -be-

cause a constant query string plus separate variables lets gateways cache by query hash, keeps

sensitive data out of logs, cuts payload size, and enables persisted‑query workflows, whereas

inline literals are fine only for quick, human‑readable demos.

gRPC
gRPC is a modern, open source, high-performance Remote Procedure Call (RPC) framework that

can run in any environment. It can efficiently connect services in and across data centers with

pluggable support for load balancing, tracing, health checking, and authentication. Originally

developed by Google, it is now part of the Cloud Native Computing Foundation. gRPC is based

on the concept of defining a service, specifying the methods that can be called remotely with

their parameters and return types. On the server side, the server implements this interface and

runs a gRPC server to handle client calls. On the client side, the client has a stub that provides

the same methods as the server.

Chapter 4 129

Key principles of gRPC
•	 Interface Definition Language (IDL): gRPC uses Protocol Buffers (Protobuf) by default

as its interface definition language to define the structure of the data and service.

•	 HTTP/2 as transport layer: gRPC uses HTTP/2 for transport, which enables multiplexed

streams over a single connection, allowing multiple requests and responses to be in flight

at the same time.

•	 Contract-first API development: Service definitions are decoupled from their imple-

mentations.

Benefits
•	 Performance: gRPC uses HTTP/2, which reduces latency and saves bandwidth through

header compression and multiplexing. Protocol Buffers, a method of serializing structured

data, are smaller, faster, and simpler than JSON.

•	 Bidirectional streaming and flow control: gRPC supports bidirectional streaming and

excellent flow control, allowing for advanced scenarios in real-time communication and

high throughput.

•	 Language agnosticism: gRPC tools support multiple languages, making it easy to build

a multi-language system.

•	 Pluggable: Authentication, load balancing, retries, and monitoring can all be configured

globally and per service.

 Limitations and challenges
•	 Limited browser support: Native gRPC is not fully supported in browsers due to the lack

of HTTP/2 support with the necessary features. gRPC-Web offers a workaround, but with

some limitations.

•	 Complexity: Handling gRPC and Protocol Buffers adds a learning curve and complexity

in development compared to REST APIs.

•	 Error handling: gRPC error handling is less transparent than HTTP status codes, as it

uses its own status codes.

Use cases
•	 Microservices: Ideal for microservices communication due to its low latency and support

for multiple languages.

•	 Real-time services: Useful for services needing real-time bidirectional data flow such as

live updates and chat services.

Defining Your Tech Stack130

•	 Network-intensive applications: Effective for mobile apps that require frequent server

communication, which is efficient over gRPC’s HTTP/2-based transport.

Example: gRPC service for user management
A gRPC service for a user management system could provide functions to create, retrieve, update,

and delete user profiles.

Here’s the service definition (Protocol Buffers):

syntax = "proto3";

package usermanagement;

// The user service definition.

service UserService {

 // Creates a user

 rpc CreateUser (User) returns (UserResponse);

 // Retrieves a user by ID

 rpc GetUser (UserRequest) returns (UserResponse);

}

// The request message containing the user's data.

message User {

 string id = 1;

 string name = 2;

 string email = 3;

}

// The request message for getting a user.

message UserRequest {

 string id = 1;

}

// The response message containing the user's data.

message UserResponse {

 string id = 1;

 string name = 2;

 string email = 3;

}

In the gRPC client and server interaction, client sends a `CreateUser` request to create a new

user with the user’s data. The server then responds with ̀ UserResponse` containing the created

user data.

Chapter 4 131

Imagine an e‑commerce marketplace that wants to give shoppers an “AI shopping assistant.”

A customer opens the mobile app, taps the chat icon, and types the following:

“I’m looking for waterproof hiking boots under $150—what do you recommend, and do you

have my size in stock at the San Jose warehouse?”

Here’s the backend RAG pipeline:

1.	 Understands the query. It embeds the request and retrieves the five most relevant product

descriptions, sizing tables, and live‑inventory snippets.

2.	 It generates a tailored reply. It feeds those documents to an LLM that crafts a conversational

answer, cites the sources, and suggests three specific SKUs that match price, waterproof

rating, and location.

3.	 It streams the response. As the LLM produces tokens, the app shows the answer in real

time, allowing the shopper to interrupt with follow‑up questions (“show me women’s

sizes” or “add the first pair to cart”).

Attribute HTTP/2 + REST gRPC Websockets

Performance
High (multiplexing and

header compression)**

Very high (binary

bidirectional

streaming)*

High (full duplex

frames)**

Browser Support Universal*** Limited* Good**

Setup Complexity Low*** High* Moderate**

Use Case Fit
One-shot request/

response***

Service-to-service

real-time streaming*

Continuous token

stream to client**

Integration Ease Simple*** Complex* Moderate**

Tooling/

Ecosystem
Extensive*** Growing** Good**

Learning Curve Low*** High* Moderate

Final Decision Selected Rejected Rejected

Defining Your Tech Stack132

Platforms for computation and distributed computing
In modern software development, especially in fields that require intensive computations such

as data science, machine learning, and image processing, specialized toolkits provide essential

functionalities that can significantly enhance performance and capability. Here, we discuss some

of the prominent toolkits, such as CUDA, OpenCL, and others designed for specific computational

needs, including distributed computing environments.

Parallelized calculation platforms and APIs
Parallelized calculation toolkits are frameworks that enable the execution of computations across

multiple processing cores at the same time, significantly improving the performance of tasks re-

quiring extensive computation, such as data processing, machine learning, or 3D rendering. These

toolkits allow developers to distribute complex calculations across a range of processors, from

CPUs to GPUs, taking advantage of the hardware’s parallel processing capabilities. By breaking

down large problems into smaller, independent tasks that can run simultaneously, these toolkits

reduce execution time and increase efficiency in handling intensive workloads, especially in fields

such as scientific computing and real-time data analysis.

CUDA
Compute Unified Device Architecture (CUDA) is a parallel computing platform and application

programming interface (API) model created by NVIDIA. It allows developers to use a CUDA-en-

abled graphics processing unit (GPU) for general-purpose processing – an approach known as

General-Purpose computing on Graphics Processing Units (GPGPU).

Characteristics and use cases

•	 High-Performance Computing (HPC): CUDA is extensively used in applications that

require massive parallel computing, from scientific simulations to deep learning

•	 Graphics and video processing: Enables complex graphics computations to be offloaded

to the GPU, speeding up rendering and processing times significantly

•	 Machine learning and AI: Libraries such as cuDNN and TensorFlow leverage CUDA for

accelerating neural network computation

•	 Benefits

•	 Speed: Utilizes the parallel nature of GPUs to execute thousands of threads simultaneously,

leading to a dramatic increase in computing performance

•	 Flexibility: Supports multiple programming languages, including C, C++, and Python,

making it accessible to a broad developer base

Chapter 4 133

•	 Ecosystem: A rich set of libraries and frameworks enhances capabilities in many scientific

and analytical computing domains

•	 Limitations and challenges

•	 Hardware dependency: Requires NVIDIA GPUs, which can be a barrier in environments

with other hardware

•	 Complexity: Programming for CUDA involves understanding parallel computation and

memory management, which can be challenging for newcomers

Open Computing Language (OpenCL)
Open Computing Language (OpenCL) is an open standard for parallel programming of hetero-

geneous systems. It was developed by the Khronos Group and enables developers to write code

that can execute across various platforms, including CPUs, GPUs, FPGAs, and other processors.

Characteristics and use cases
•	 HPC: OpenCL is widely used in scientific simulations, financial modeling, and other ap-

plications requiring extensive computational power across diverse hardware.

•	 Graphics and video processing: It facilitates the execution of complex graphics and video

processing tasks on GPUs, enhancing rendering speeds and efficiency.

•	 Machine learning and AI: OpenCL supports machine learning frameworks and applica-

tions, allowing for accelerated neural network training and inference on various hardware.

Benefits
•	 Cross-platform compatibility: OpenCL can run on a wide range of hardware from differ-

ent vendors, including AMD, Intel, ARM, and NVIDIA, promoting flexibility and reducing

vendor lock.

•	 Scalability: It allows developers to write code that can scale from embedded devices to

large supercomputers, utilizing available computational resources efficiently.

•	 Portability: OpenCL code is portable across multiple devices and architectures, ensuring

that applications can leverage the best available hardware without significant rewrites.

•	 Flexibility: It supports a range of programming languages, such as C, C++, and Python,

enabling developers to choose the best language for their needs.

•	 Limitations and challenges

•	 Complexity: Writing efficient OpenCL code can be complex due to the need to manage

memory and concurrency explicitly. This complexity can pose a steep learning curve for

developers new to parallel programming.

Defining Your Tech Stack134

•	 Performance overhead: Although OpenCL provides portability, it may introduce perfor-

mance overhead compared to vendor-specific solutions such as CUDA, as it cannot fully

optimize for any single hardware architecture.

•	 Tooling and ecosystem: While many vendors support OpenCL, the ecosystem and tooling

are not as mature or extensive as those for CUDA, potentially limiting the availability of

prebuilt libraries and frameworks.

OpenCL’s ability to run across multiple types of processors makes it a versatile choice for appli-

cations requiring high-performance computing on diverse hardware, despite the complexities

and potential performance trade-offs involved.

Distributed computing engines
Engines such as Apache Hadoop and Apache Spark are crucial for applications that require

distributed computing, splitting tasks across multiple computing resources.

Apache Hadoop
When a dataset grows beyond the capacity of a single machine or the response‑time budget of

disk‑bound processing, the conversation inevitably turns to engines that can spread work across

a cluster. The two venerable names here are Apache Hadoop and Apache Spark, yet they solve

the scaling problem in very different ways and therefore occupy different niches in a modern

architecture.

Hadoop appeared first, pairing its distributed file system (HDFS) with the MapReduce program-

ming model. The design goal was durability and throughput, not speed: data blocks are replicated

three times across racks, and the computation is “shipped to the data,” so a failed node is an

inconvenience rather than a disaster.

•	 Benefits: High fault tolerance, scalable storage, and a flexible data processing layer

(MapReduce)

•	 Challenges: Complex setup and management, and slower compared to newer systems

such as Spark for certain computations

Chapter 4 135

Apache Spark
Spark was created to attack exactly those pain points. It keeps intermediate data in RAM (or at

worst on a fast local SSD) by representing each transformation as a node in a directed‑acyclic graph

and fusing many of those nodes into a single pass. Interactive SQL, iterative machine‑learning

feature engineering, and micro‑batch streams feeding dashboards—these are the domains where

Spark routinely delivers in seconds what MapReduce would deliver in tens of minutes.

•	 Benefits: High-level APIs in Java, Scala, Python, and R. Integrates seamlessly with big data

tools and supports complex pipelines.

•	 Challenges: Resource management can be intensive, and optimal performance often

requires tuning.

In our case, all computational requests will be processed by external models. Who knows, maybe

we will need to use a framework that will use a local model application in the future. In this case,

we will add such functionality to the framework.

Machine learning models as framework components
Since early 2024, the model landscape has stabilized around two plug‑in roles your RAG frame-

work must expose: an embedding block that turns text into vectors for retrieval, and a generator

that turns vectors and context back into prose. Everything else – classic boosters and vision

backbones – can stay optional.

Here’s how to think about the embedding model:

•	 Measure what matters: Public leaderboards such as MTEB report retrieval F1 on 56 tasks;

treat them as a filter, then rerun the top five on your corpus. Margins above ±2 pp are

rarely significant.

•	 Vector size drives storage: A 1024‑dim vector from BGE‑large eats three times the RAM of a

384‑dim MiniLM vector; that cost multiplies when your index holds billions of documents.

•	 Latency versus ops: Cloud APIs (OpenAI, Cohere) add ~60–100 ms of network overhead

but outsource upgrades and scaling; self‑host checkpoints need GPUs and paging, yet

avoid per‑call fees.

•	 License and privacy gate: SaaS may be off‑limits for regulated data; Apache‑2 models

such as BGE or Flag Embedding remove that blocker

•	 Here’s how to choose a generative LLM:

Defining Your Tech Stack136

•	 Reasoning skill versus context window: GPT‑4o handles 128,000 tokens with

state‑of‑the‑art accuracy, while Claude‑3 Opus stretches to 200,000+, but at a higher

cost and SaaS‑only availability.

•	 Token price and speed: GPT‑4.1, launched in April 2025, cuts costs by 26% and streams

faster than GPT‑4o; Mistral Large 2 offers a mid‑range price for 128,000 context.

•	 Hosting footprint: Llama 3 70 B runs acceptably on two A100s (≈ 140 GB VRAM); anything

over 120 B parameters needs multi‑GPU or tensor‑parallel clusters.

•	 License and fine-tune freedom: Open checkpoints (Llama 3, Mistral) enable on‑prem

fine‑tuning and sidestep SaaS data‑sovereignty concerns; proprietary APIs buy you im-

mediate quality but lock you to vendor deprecations.

Development tooling
Because frameworks not only simplify the creation of applications related to a specific target

but also provide guidelines and should support practices for writing code as well, they usually

include development tooling to establish such approaches. This tooling can contain the following:

•	 Code generators and code structure generators: These tools automatically generate boil-

erplate code, data models, or even entire project structures based on predefined templates

or schemas. They speed up development and ensure project consistency by enforcing

standard patterns and practices.

This tooling is usually developed together with the framework. In Django, commands

such as startproject and startup are prime examples of code generators. They create

directories and files for projects and applications, respectively, setting up a standardized

directory structure and essential files such as settings, URLs, and WSGI configurations.

•	 Testing engines: These include frameworks and tools that support unit testing, integration

testing, system testing, and sometimes acceptance testing. Popular examples include JUnit

for Java, pytest for Python, and Mocha for JavaScript. Using testing engines ensures that

the framework and the applications built with it are reliable and meet quality standards.

Typically, frameworks build an alternative control flow for testing. In this way, developers

can cover with tests only their code because embedding testing scenarios is enabled by

the framework itself.

Chapter 4 137

•	 Documentation engines and API design libraries: Tools such as Javadoc, Sphinx, and

Doxygen automatically generate documentation from the code base. Good documenta-

tion is crucial for any framework, as it aids developers in understanding and utilizing the

framework correctly, enhancing the developer experience and adoption. Tools such as

Swagger (OpenAPI) for designing and documenting REST APIs ensure your framework

can interact effectively with other software.

By clearly defining these aspects of the tech stack, you establish a foundation that supports

effective development and ensures that the framework can adapt to future technological

changes or enhancements.

Summary
Throughout this chapter, we emphasized the significance of aligning a framework’s technology

stack with its intended functionalities and the broader technological ecosystem. From choosing

the right programming languages and storage solutions to integrating with existing corporate

tech stacks, each decision must be guided by both current requirements and future projections.

We also covered the necessity of community support and the economic aspects of technology

choices, which can greatly influence a project’s long-term viability and success. As we concluded,

the careful consideration of these factors not only facilitates smoother development processes

but also enhances the framework’s ability to adapt to new challenges and opportunities in the

evolving tech landscape. This comprehensive approach ensures that the technology stack meets

the technical requirements and supports the organization’s strategic goals.

In the next chapter, we will observe architectural patterns and solutions that could also be in-

volved in framework design.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

5
Architecture Design

This chapter delves into the critical architectural design process within application development

frameworks (ADFs). Architectural design plays a pivotal role in laying a foundation for support-

ing and enhancing application frameworks’ functionality and manageability. By establishing a

coherent and well-thought-out architecture, developers can ensure that the framework operates

efficiently and adapts seamlessly to present and future technological challenges.

The essence of architectural design in framework development revolves around making informed

decisions about the structure of system components and their interrelationships. This strategic

planning is crucial for aligning project goals, managing scope, accurately estimating efforts, and

determining the necessary skills within the development team. Projects may need a robust archi-

tectural foundation to handle increased effort, scope creep, and compatibility issues.

Many teams employ software tools to facilitate effective architecture. These tools provide method-

ologies and tools to create and maintain dynamic and robust architectures. These operations are

integral to transforming initial designs into actionable, scalable, and maintainable frameworks.

In this chapter, we’re going to cover the following main topics:

•	 A comprehensive introduction to the principles and practices involved in framework

architecture

•	 Exploring general tasks of framework architecture

•	 Defining framework architecture components

•	 Design patterns

•	 Techniques for designing frameworks that are adaptable and extensible

Architecture Design140

By the end of this chapter, you will have a thorough understanding of how to approach architec-

tural design for ADFs, enabling you to craft solutions that are both efficient and forward-looking,

catering to the evolving demands of the tech industry.

General tasks of framework architecture
Much like software architecture in general, the architecture of a framework is responsible for

defining clear boundaries and ensuring effective communication within developer communities.

A well-structured framework architecture allows different groups of developers – those building

the framework itself, those extending it, and those using it – to work together efficiently.

A framework does not exist in isolation. It operates within a broader ecosystem that consists

of four key levels (see Figure 5.1), each playing a distinct role in the life cycle of the framework.

Understanding these levels is crucial for designing architectures that are both extensible and

maintainable.

Figure 5.1: Communication architecture around a framework

Core principles are modularity, extensibility, maintainability, and scalability:

•	 Modularity: Design the framework as a collection of independent components or modules

with minimal coupling. This separation of concerns allows teams to develop, test, and

deploy parts in isolation, reducing complexity and improving maintainability.

Chapter 5 141

•	 Extensibility: Provide clear extension points (such as plugins, hooks, or APIs) so developers

can add new functionality without modifying the core. A framework should accommodate

new requirements or integrations without necessitating a major rewrite as needs evolve.

•	 Maintainability: Emphasize clean design and code consistency to ease long-term upkeep.

Internally, follow consistent conventions and coding standards – the best frameworks are

internally consistent and well documented. Documentation is critical – clearly document.

•	 Scalability: Plan the architecture to handle growth in users, features, and data. Scalability

means the system can expand without performance degradation. Techniques include de-

signing stateless components that can be load-balanced and using modular services that

scale horizontally. For instance, separating concerns (database, logic, and presentation)

lets each layer scale as needed. A modular framework can be scaled out by deploying more

instances of heavy-use modules or microservices.

Since we have already covered the stack level in detail in the previous chapter, we will now focus

directly on the framework itself. This chapter examines the core structure, components, and

interaction principles that define how the framework operates and how it supports application

development.

Framework level: building the foundation
At the core of any framework is a set of fundamental tools and systems that define how applications

are structured and operate. Developers working at this level are responsible for the following:

•	 Designing and implementing the core architecture of the framework

•	 Managing state, routing, data handling, and business logic structures that application

developers will rely on

•	 Creating tools, documentation, and APIs that simplify development and ensure consis-

tency across projects

This level is where the biggest architectural decisions happen. It’s where developers define control

flows, dependency management, and performance optimizations, ensuring that the framework

provides a scalable and efficient foundation.

Architecture Design142

The following are examples:

•	 Django provides an opinionated Model-View-Template (MVT) structure, an ORM, and

built-in authentication

•	 Flask, a micro-framework, offers lightweight routing and request handling but relies on

extensions for added functionality

•	 TensorFlow defines core computation graphs and APIs for machine learning tasks

Without a solid framework level, application developers would struggle with inconsistencies,

performance bottlenecks, and a lack of clear guidance on best practices.

Framework community level: extending the ecosystem
Once a framework core is in place, it often grows beyond its original design. No matter how well

architected it is, there will always be edge cases, specialized needs, and evolving technology

trends. This is where the broader community of developers steps in to enhance the framework’s

capabilities.

Developers working at this level contribute by doing the following:

•	 Building plugins, libraries, and tools that extend the functionality of the framework

•	 Integrating third-party technologies, such as databases, caching systems, or cloud services,

into the framework ecosystem

A healthy framework thrives on community contributions. A flexible plugin architecture, an

active package ecosystem, and well-documented extension points make it easier for developers

to create tools that others can adopt.

The following are examples:

•	 Django REST framework (DRF) extends Django with powerful tools for building REST

APIs

•	 LangChain plugins enable integration with various AI models, expanding the core frame-

work capabilities

This level is what keeps frameworks evolving – it allows them to adapt to industry trends without

requiring constant rewrites of their core logic.

Chapter 5 143

Application level: the final layer of implementation
At the outermost level, developers use frameworks to build real-world applications. While they

may not contribute directly to the framework’s core, their work is crucial: their feedback shapes

future improvements, and their use cases drive the need for extensions and refinements.

Developers at this level do the following:

•	 Use the framework’s core features to build full-fledged applications

•	 Integrate third-party plugins and libraries to extend the framework’s capabilities

•	 Provide real-world feedback that influences future versions of the framework

This level represents the end goal of framework design – making life easier for application devel-

opers so they can focus on solving business problems rather than reinventing core functionality.

The following are examples:

•	 A Django developer building a content management system (CMS) for a news website

•	 A Flask developer creating a REST API for a fintech application

•	 A machine learning engineer using TensorFlow to deploy a neural network model in

production

Understanding these three levels helps framework architects make better design decisions. A

well-structured framework isn’t just about writing code – it’s about designing an ecosystem

where developers at all levels can contribute and benefit. By keeping these three levels in mind,

architects can ensure that their frameworks remain relevant, extensible, and widely adopted.

Now, we will review the basic structure of a typical framework.

Architecture Design144

Framework architecture components
Let’s dig into the framework architecture components that are presented in Figure 5.2:

Figure 5.2: Diagram of architecture components

Core
The core is the fundamental structure of a framework, encompassing all critical components

required for the application’s operation. It provides the foundational infrastructure and manages

the application life cycle, configuration, and basic primitives.

The following is the composition of the core:

•	 Application context (containers, configuration): Manages global dependencies, config-

urations, and the overall state of the application. For example, in Django, this includes

managing configurations through settings.py and handling dependencies via INSTALLED_

APPS. Here, INSTALLED_APPS refers to a registry that tracks and manages various framework

components, such as routes, middleware, and registered applications. For example, in

Django, registries include URLconf for route management and the application registry.

•	 Basic components: Fundamental building blocks used to create objects and implement

business logic. For example, in Django, these are represented by model, view, and tem-

plate components.

Chapter 5 145

•	 Control flows: Logic for managing data-processing workflows and request handling.

For example, in Django, this includes processing requests via middleware, routing, and

handling views.

Libraries and drivers
Libraries and drivers enable interaction with external technologies such as databases, filesystems,

APIs, and other external services:

•	 Core libraries and drivers: Libraries and drivers that perform basic operations with un-

derlying technology stacks, enabling low-level system interactions. For example, in SQLAl-

chemy, this refers to database-specific drivers used to connect and interact with databases.

•	 Context libraries and drivers: Third-party libraries and plugins added to extend the

framework’s functionality, typically used to integrate external services or specialized tools,

for example, Django plugins, image-processing libraries, or external API integration tools.

•	 Application-level libraries and drivers: Libraries and drivers integrated specifically into

applications to handle user interfaces (UIs), data management, or business logic. For

example, in Flutter, this includes widgets and UI libraries; in Django, an example is DRF

for building REST APIs.

•	 Primitives: These are basic building blocks within frameworks, forming the foundation

for developing complex functionality. The typical workflow involves using primitives to

build basic components, which are then registered in registries to be integrated into the

control flow. Primitives can be implemented as classes, functions, or templates, often

following well-known design patterns.

The following are examples:

•	 SQLAlchemy: Base, engine, and session

•	 Flutter: Widgets, state, and BuildContext

•	 LangChain: Prompts, chains, and agents

•	 Jetpack Compose: Composables and StateFlow

The control flow orchestrates how data and requests move through the framework by invoking

registered components in the right order.

The following are examples:

•	 SQLAlchemy: Engine → Session → ORM → SQL query

•	 LangChain: Prompts → Chains → Agents → Results

Architecture Design146

•	 TensorFlow: Build computation graph → Execute computation graph

•	 Flutter: UI events → State → UI rebuild

•	 Frameworks often provide mechanisms to extend or alter their default behavior:

•	 SQLAlchemy: Customizing transaction handling or query expressions

•	 LangChain: Creating custom chains and prompts

•	 Flutter: Utilizing inheritance and composition patterns to customize UI behavior

Design patterns
Architectural patterns in a framework shape the way an application is built. The framework’s

architecture exists not just to connect its own pieces but to help developers use those patterns in

their apps. This makes component design easier, improves communication between parts, and

lets everything fit smoothly into the framework’s control flow.

In this analysis, we will explore two crucial groups of architectural patterns that significantly

influence modern software design:

•	 Code structure patterns: These patterns enhance the internal structure of applications

by clearly segregating responsibilities, boosting both maintainability and scalability

•	 Data management patterns: Data is typically hosted in different locations and across

multiple servers for reasons such as performance, scalability, or availability, and this can

present a range of challenges

Code patterns
Code design patterns primarily address two crucial aspects:

•	 Separation of concerns: These patterns delineate clear boundaries within an application,

assigning distinct responsibilities to separate components. This approach ensures that

changes in one part of the system do not ripple through to others, making it easier to

manage and modify.

•	 Complexity management: By organizing code into well-defined modules or layers, these

patterns reduce the overall complexity of the system. This modularization helps develop-

ers focus on one area at a time and improves the clarity and coherence of the code base.

Chapter 5 147

MVC
The Model-View-Controller (MVC) pattern was first developed by Trygve Reenskaug during

his work at Xerox PARC in 1979. Originally designed for desktop graphical UIs, this pattern has

become foundational in web application development. It separates an application into three

interconnected components: the model, the view, and the controller, each handling specific

development aspects of an application.

MVC is widely used in web development to separate data access, business logic, and the UI, which

simplifies management and facilitates scalability. While primarily associated with web applica-

tions, MVC is also applicable to the development of desktop and mobile applications.

The pros of using MVC include improved separation of concerns, making applications easier

to manage, test, and scale. It enhances reusability across different parts of an application and

supports flexible and incremental development. However, MVC can introduce complexity in

large applications, making it difficult to maintain as interactions between components become

more intertwined. The strict separation can also lead to excessive boilerplate code, increasing

development time.

Here’s a simplified UML diagram to illustrate the MVC architecture:

Figure 5.3: MVC pattern

Architecture Design148

While MVC is supported by numerous frameworks, such as Ruby on Rails and ASP.NET MVC, it’s

worth noting that Django, often thought to use MVC, actually employs a slightly modified pattern

known as Model-View-Template (MVT). In MVT, the controller is handled by the framework

itself, and the developer is primarily concerned with models, views, and templates.

HMVC
The Hierarchical Model-View-Controller (HMVC) pattern is an extension of the traditional MVC

pattern, designed to handle the complexities of large-scale applications. It introduces a hierarchy

of MVC triads, allowing each component to function independently within its own MVC context.

This pattern emerged to address the limitations of the traditional MVC architecture when dealing

with complex, modular applications.

Figure 5.4: HMVC pattern

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 5 149

HMVC is primarily used in large-scale web applications to manage complex UI hierarchies and

facilitate modular development. An advantage of HMVC is improved modularity, making it eas-

ier to manage and scale large applications by breaking them down into smaller, self-contained

modules. This modularity facilitates independent development and testing of different parts of

the application. Enhanced reusability is another benefit, as modules can be reused across different

parts of the application or even in different projects.

However, HMVC can introduce additional complexity with the nested structure of controllers,

views, and models. This can make the application harder to understand and manage, especially

for developers unfamiliar with the pattern. The increased number of components and their in-

teractions can also lead to more boilerplate code and potential performance overhead.

HMVC is supported by frameworks such as Kohana and CodeIgniter in PHP.

MVVM
The Model-View-ViewModel (MVVM) pattern originated from Microsoft as a specialization of

the Presentation Model design pattern. Introduced in the early 2000s to support XAML-based

applications, it aimed to simplify the management of complex UI behaviors and data bindings,

particularly in Windows Presentation Foundation (WPF) and Silverlight. MVVM provides a clear

separation between the UI and business logic, making it easier to manage and develop complex UIs.

Primarily used in application platforms that support rich client interfaces, such as WPF, Silverlight,

Xamarin, and more recently in web development frameworks such as Angular, MVVM excels in

environments where the UI is data-driven and complex interactions need to be managed without

excessive coupling between the UI and its underlying data logic.

Figure 5.5: MVVM pattern

Architecture Design150

MVVM offers a strong separation of concerns by decoupling the UI from business logic, facil-

itating easier maintenance and scalability of UI components. Enhanced testability is another

advantage, as the business logic in the ViewModel can be tested without involving the UI. Ad-

ditionally, ViewModels can be reused across different views if they do not directly reference UI

elements. However, the additional layer of ViewModel can introduce complexity, making the

system harder to understand and manage, especially for simpler UIs. Data binding mechanisms,

central to MVVM, can also introduce performance overhead in scenarios where binding updates

are frequent and data-heavy.

MVVM is widely supported by frameworks that prioritize data binding and UI abstraction, such

as Microsoft’s WPF and Xamarin for mobile applications. Web frameworks such as Angular also

utilize concepts similar to MVVM to manage the state and behavior of web components effectively.

MVP
The Model-View-Presenter (MVP) pattern evolved from the MVC pattern to better address the

separation of concerns in complex applications. It was popularized by frameworks such as Apache

Flex and .NET Framework for desktop and mobile applications, offering a more structured ap-

proach to managing user interactions and business logic.

MVP is commonly used in desktop and mobile applications, as well as web applications. It divides

an application into three interconnected components: model, view, and presenter. The model

handles the business logic and data retrieval, the view displays the data, and the presenter acts

as an intermediary that processes user input and updates the model and the view accordingly.

The advantages of MVP include a clear separation of concerns, making it easier to maintain and

test the application. The presenter handles all user interactions, simplifying the view and making

it more reusable. Enhanced testability is achieved as the presenter can be tested independently

of the UI.

However, MVP can introduce complexity due to the additional layer of the presenter, which may

lead to more boilerplate code. This can make the system harder to understand and manage, es-

pecially for simpler UIs where the added complexity may not be justified.

MVP is supported by frameworks such as Google Web Toolkit (GWT) and Android, illustrating

its effectiveness in managing user interactions and business logic across different platforms. By

clearly separating the responsibilities of the view, model, and presenter, MVP helps developers

create applications that are easier to test, maintain, and scale.

Chapter 5 151

Beyond the widely used patterns such as MVC and MVVM, there are several other specialized

architectural patterns, such as Presentation-Abstraction-Control (PAC), View-Interactor-Pre-

senter-Entity-Router (VIPER), and Flux. These patterns address specific needs in particular

domains, such as PAC for interactive systems, VIPER for iOS application development, and Flux

for managing state in JavaScript applications.

Data management patterns
CQRS pattern
Command and Query Responsibility Segregation (CQRS) is an architectural pattern that sep-

arates data operations into distinct read and write paths, significantly enhancing application

performance, scalability, and maintainability. By segregating these responsibilities, CQRS allows

the development of specialized models tailored for efficient data access and command execution.

In traditional CRUD-based systems, a single data model typically handles both data retrieval and

updates. While adequate for simple applications, this approach becomes cumbersome as applica-

tion complexity grows. Queries might demand varied data shapes, resulting in complicated data

transfer object (DTO) mappings. Similarly, write operations often embed intricate validation

logic and business rules, causing the data model to become overly complex.

In contrast, CQRS introduces two distinct models:

•	 Commands: Task-oriented operations (e.g., BookHotelRoom instead of

UpdateReservationStatus) that manage state modifications. Commands frequently

employ asynchronous processing queues, improving system responsiveness and reducing

bottlenecks.

•	 Queries: Focus solely on data retrieval, returning DTOs without domain logic or side

effects. This isolation simplifies query optimizations and enhances read performance.

Additionally, CQRS helps manage complex validation scenarios by enforcing preliminary checks

on the client-side UI, which reduces server-side conflicts and improves user experience.

Event Sourcing pattern
Event Sourcing is an architectural approach that captures all state changes as an immutable

sequence of domain events, rather than merely storing the current state. This event log serves

as the authoritative source of truth, enabling state reconstruction at any time and providing a

robust audit trail.

Architecture Design152

Traditional CRUD approaches often suffer performance degradation and scalability limitations

due to direct data store interactions and transactional locks. Concurrent modifications may lead

to conflicts, and the historical context of data changes can easily be lost.

Event Sourcing addresses these challenges by doing the following:

•	 Recording every action or event (e.g., OrderItemAdded) in an append-only event store

•	 Decoupling event production from event consumption, allowing subscribers to asynchro-

nously process events for updating materialized views or external integrations

•	 Facilitating comprehensive auditing, historical data analysis, and easy state reconstruction

by replaying events, greatly simplifying debugging and compliance processes

Events stored in this manner support various use cases, including generating real-time updates

for UI views, synchronizing external systems, or creating projections of current entity states.

One of the greatest strengths of Event Sourcing is its ability to preserve a complete, immutable

history of everything that happens within the system. But as with any architectural choice, this

power comes with trade-offs.

First, the event log grows indefinitely. Since it’s an append-only structure, it accumulates all

historical activity, which over time can lead to significant storage requirements and increasingly

long backup processes.

Second, working directly with raw events makes answering ad hoc questions cumbersome. Busi-

ness users or developers often need quick access to the current state of the system, but extracting

that information from an event stream requires replaying events or building additional infra-

structure.

Third, the system naturally operates with eventual consistency. While the event log captures the

ground truth immediately, supporting components such as read models or projections typically

update asynchronously.

Fourth, evolving the structure of events introduces complexity. As the system grows, event pay-

loads often change, and replaying older events with newer code can cause compatibility issues

if not handled properly.

Materialized View pattern
The Materialized View pattern precomputes and stores query-specific data structures optimized

for rapid and efficient data retrieval. This pattern is particularly beneficial when the underlying

storage format is not suitable for complex or frequent queries, significantly boosting query per-

formance and reducing data access latency.

Chapter 5 153

Typical storage formats, particularly in NoSQL databases, emphasize data integrity, storage ef-

ficiency, or scalability at the expense of query efficiency. For example, retrieving partial data

(such as order summaries) from aggregated records can require extensive processing, negatively

impacting performance.

Materialized views proactively address this by doing the following:

•	 Precomputing and caching subsets of data specifically tailored to anticipated queries

•	 Including computed columns, joined data entities, transformations, or aggregated results

to directly serve frequent queries without additional processing

•	 Allowing the cached data to be disposable and easily rebuilt from original sources, en-

hancing resilience and data integrity

When underlying data changes, materialized views are refreshed through automated triggers,

scheduled jobs, or manual initiation, ensuring consistent, up-to-date information availability.

Collectively, these patterns – CQRS, Event Sourcing, and Materialized View – offer robust solutions

for effectively managing complex data scenarios, optimizing system responsiveness, scalability,

and long-term maintainability in modern distributed systems.

Structuring a framework for extensibility
Designing a software project for extensibility is crucial for maintaining and scaling applications

efficiently over time. It involves creating a flexible architecture that allows for future growth,

feature additions, and integration with other systems without significant overhauls.

Modular design
A project should be structured into distinct, loosely coupled modules with well-defined interfaces.

Each module handles a specific aspect of the application’s functionality and can be developed,

tested, and updated independently. This approach enhances maintainability, reduces complex-

ity, and increases the ease of adding or updating features. It also supports parallel development

across different teams.

Leveraging design patterns
The use of design patterns such as Factory, Strategy, Observer, and Decorator can solve common

problems in a reusable and predictable way. These patterns provide proven solutions for frequent

architectural issues, promoting adaptability and scalability. Design patterns simplify the develop-

ment process by providing a tested and understandable approach to recurring design problems,

enhancing code readability and reducing errors.

Architecture Design154

Dependency injection
Dependency injection (DI) is a technique in which objects receive their dependencies from ex-

ternal sources rather than creating them internally. This can be facilitated through frameworks

that manage object creation and binding. DI decouples the creation of an object from its usage,

making the system easier to extend and modify. It also simplifies unit testing by allowing easy

injection of mock dependencies.

API-first design
This design prioritizes the development of APIs before the implementation of services. This ap-

proach ensures that the API serves as a contract that guides the development of the application

logic. It promotes a clear separation between the frontend and the backend, allowing teams to work

independently and making it easier to integrate with external systems and third-party services.

Configuration management
This practice allows the application behavior to be adjusted without code changes, accommodat-

ing different environments and scenarios. It enhances flexibility and makes deployment across

different environments smoother and more predictable. It also reduces the risk of errors during

deployment and configuration changes.

Versioning strategy
This approach for APIs and components ensures backward compatibility and facilitates smooth

transitions between different versions of the application. It protects existing clients from break-

ing changes and provides a clear roadmap for clients and developers about when and how new

features and changes are introduced.

Extensible data model
These models can be easily extended to accommodate new features without disrupting existing

functionality, which is essential for a scalable system. It reduces the need for database refactoring

and simplifies the process of integrating new features, improving the overall robustness of the

application.

Event-driven architecture uses events to trigger and communicate between decoupled services

in an application. This approach facilitates reactive programming and can scale to handle a high

volume of events. It provides a highly scalable and responsive system. It allows adding new event

processors or services with minimal impact on existing components.

Chapter 5 155

Summary
This chapter explored architectural design within application frameworks, emphasizing principles

that enable robust, scalable, and extensible systems. It addressed the general tasks involved in

framework architecture, highlighting key principles such as modularity, extensibility, maintain-

ability, and scalability. The discussion extended to framework architecture components, including

core infrastructure, libraries, drivers, primitives, and control flows.

We also covered critical architectural patterns – MVC, HMVC, MVVM, and MVP – detailing their

applications, strengths, and limitations. Additionally, essential data management patterns, such

as CQRS, Event Sourcing, and Materialized View, were examined for optimizing data handling

and performance.

Finally, techniques for designing frameworks for extensibility, including modular design, DI,

API-first strategies, configuration management, and event-driven architectures, were introduced.

You should now possess the knowledge needed to design future-proof frameworks capable of

adapting to evolving technological demands.

The next chapter will detail the essential principles and prototyping methods vital for construct-

ing an ADF. We will explore how to prototype an ADF from scratch. Step by step, we will extract

common patterns, define clean abstractions, and structure a lightweight, agent-oriented frame-

work ready for real-world use.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

6
ADF Development
Fundamentals

This chapter covers the core principles and prototyping techniques crucial for creating an appli-

cation development framework (ADF). Rather than starting from zero, successful framework

development grows out of careful analysis and abstraction of existing application patterns. By

spotting the most common control flows, reusable components, and general-purpose features

in current applications, developers can build a strong foundation. This approach speeds up the

development of future applications in the same domain.

Using real examples, we demonstrate how to prototype a framework by breaking out key compo-

nents and defining execution flows in stages. As a concrete example, we build a simple agent-ori-

ented framework designed for applications that use large language models (LLMs). This frame-

work abstracts recurring tasks – including user input handling, system prompt generation, model

calls, and response parsing – into modular, composable parts.

Starting with a minimal prototype that calls an OpenAI model directly, we gradually add essential

abstractions and well-defined control flows. Later iterations include advanced concepts such as

role-based agent routing, where different agent “personas” handle specialized tasks. We also

cover how to bundle the framework into a reusable Python package, using modern tools and best

practices for CI, dependency management, and QA.

ADF Development Fundamentals158

Throughout this chapter, you will gain practical insights into the following:

•	 Exploring prototyping techniques and best practices

•	 Embracing Agile principles for responsive development

By the end of the chapter, you will be equipped with the skills to prototype and develop frame-

works that are scalable, maintainable, and highly adaptable to evolving technological needs.

Prototyping techniques and best practices
When creating a framework, avoid starting from scratch. Instead, review a set of real-world appli-

cations and note common control flows, abstractions, and components. These shared elements

become a reusable core, speeding up future development within the same domain.

In this section, we provide a practical example of how to prototype a framework by extracting

common behaviors from an existing application. In our first iteration, we identify the minimal

set of reusable modules and define the essential execution flow.

As our concrete case, we’ll show how to build a lightweight agent-oriented framework for LLM-

based applications. Our motivation comes from repetitive patterns in existing tools – processing

user input, adding context via system prompts, routing to a model backend, and transforming

the model’s output into usable responses.

We’ll demonstrate how these steps translate into core components – messages, models, and

routers – and how to incrementally organize them into a composable system. The result of this

initial iteration is a functional prototype that encapsulates a clear control flow and abstracts

model interaction, forming the conceptual nucleus of a future extensible framework.

You can find this and future examples in the GitHub repository:

https://github.com/PacktPublishing/Building-an-Application-Development-Framework.

To run this example, you will need to install the OpenAI Python SDK (version 1.x+):

1.	 Create an OpenAI account at https://platform.openai.com/signup and obtain your

API key from the dashboard under API Keys.

2.	 Set your API key in the environment so it can be accessed by the script:

export OPENAI_API_KEY="sk-****"

https://github.com/PacktPublishing/Building-an-Application-Development-Framework
https://platform.openai.com/signup

Chapter 6 159

A minimal agent invocation
Here is the minimal working prototype. It sets up a client using an API key obtained from the

environment, sends a simple prompt to the gpt-4o-mini model (“Create a haiku”) with the in-

struction “You are a poet”, and prints out the generated haiku returned by the model:

import os

from openai import OpenAI

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", ""))

def main():

 user_input = "Create a haiku"

 system_prompt = "You are a poet"

 response = client.chat.completions.create(

 model="gpt-4o-mini",

 messages=[

 {"role": "system", "content": system_prompt},

 {"role": "user", "content": user_input}

],

 temperature=0.7,

)

 print(f"User input:{user_input}")

 print("\nAgent answer:\n")

 print(response.choices[0].message.content)

ADF Development Fundamentals160

If you run this code, your output will look as follows:

Output:

User input: Create a haiku

Agent answer:

Whispers in the breeze,

Autumn leaves dance, softly fall,

Time's gentle embrace.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features.

Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Chapter 6 161

Defining core abstractions and control flow
At this stage, we begin extracting a control flow from our minimal working example. We introduce

a structured representation of the LLM conversation using explicit message types: SystemMessage,

UserMessage, and AssistantMessage. These become the primitives of our agent communication

model:

@dataclass(frozen=True)

class Message(abc.ABC):

 """

 Abstract base class for all message types.

 Each message represents a conversational turn.

 """

 content: str

 def __str__(self):

 return self.content

@dataclass(frozen=True)

class UserMessage(Message):

 """

 Represents a message coming from the user.

 """

@dataclass(frozen=True)

class SystemMessage(Message):

 """

 Represents the system prompt that sets up model behavior.

 """

@dataclass(frozen=True)

class AssistantMessage(Message):

 """

ADF Development Fundamentals162

 Represents a message coming from the assistant (model).

 """

We also define a single OpenAIAgent class responsible for orchestrating this flow: it receives a

sequence of messages, formats them according to the OpenAI API, invokes the model, and returns

the assistant’s reply.

This clean separation of message types and model handling sets the foundation for a composable

agent framework:

class OpenAIAgent:

 system_prompt: SystemMessage = SystemMessage("You are a poet")

 client: OpenAI

 """

 Encapsulates the control flow for communicating with the OpenAI model.

 Takes a sequence of messages and returns an assistant reply.

 """

 @staticmethod

 def _convert_to_openai_message(msg: Message) -> Any:

 if isinstance(msg, SystemMessage):

 return {"role": "system", "content": msg.content}

 elif isinstance(msg, AssistantMessage):

 return {"role": "assistant", "content": msg.content}

 elif isinstance(msg, UserMessage):

 return {"role": "user", "content": msg.content}

 else:

 raise ValueError(f"Unsupported message: {type(msg)}")

 def generate(self, messages: list[Message]) -> AssistantMessage:

 """

 Accepts a list of Message objects, formats them into OpenAI's
schema,

 calls the model, and returns an AssistantMessage.

 """

Chapter 6 163

 openai_messages = [self._convert_to_openai_message(self.system_
prompt)]

 for msg in messages:

 if openai_message := self._convert_to_openai_message(msg):

 openai_messages.append(openai_message)

 # Send to OpenAI model

 response = self.client.chat.completions.create(

 model="gpt-4o-mini",

 messages=openai_messages,

 temperature=0.7,

)

 # Return the model's reply as an AssistantMessage

 return AssistantMessage(content=response.choices[0].message.
content or "")

And now our execution flow looks as follows:

def main():

 # 1. Create user message (prompt)

 user_message = UserMessage("Create a haiku")

 # 2. Initialize OpenAI API client

 openai = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", ""))

 # 3. Initialize the agent

 agent = OpenAIAgent()

 agent.client = openai

 # 5. Define the conversation so far

 conversation = [user_message]

 # 6. Call the agent to generate a response

 answer = agent.generate(conversation)

 # 7. Display input and output

 print(f"User input: {user_message}")

ADF Development Fundamentals164

 print("\nAgent answer:\n")

 print(answer)

Introducing roles and agent routing
Previously, we introduced a minimal agent that manages message sequences and returns an

assistant response. However, real-world LLM applications often require multiple specialized

agents – for example, translators, summarizers, or Q&A bots – each with unique instructions

and configurations. Strictly speaking, the previous implementation encodes a minimal linear

control flow – a single pass through a prompt-response cycle. While it lacks branches, loops, or

error handling, it still centralizes the rules for input transformation and model invocation.

To support such modularity and reuse, we introduce the concept of roles.

A role represents a named task or persona that the system can provide. Each role is tied to an agent

implementation that receives a list of messages and produces a response. For example, "poet"

might use one model setup, while "translator" might use a different one entirely:

@dataclass(frozen=True)

class Role:

 """Links a role name to a specific agent."""

 name: str

 agent: Agent

RoleRouter acts as a dispatcher. It maintains a registry of roles and is responsible for routing

requests (a message list + role name) to the correct agent. This structure mirrors conventional

routing logic in web frameworks but is adapted for LLM workflows:

class RoleRouter:

 """Routes messages to the correct agent based on the requested
role."""

 __registry__: dict[str, Role] = {}

 def register(self, role: Role) -> None:

 """Register a new role in the router."""

 self.__registry__[role.name] = role

Chapter 6 165

 def navigate(self, role: str, messages: list[Message]) ->
AssistantMessage:

 """Look up the agent for `role` and delegate the messages."""

 if role not in self.__registry__:

 raise RoleIsNotRegisteredError(f"Role '{role}' not
recognized.")

 target_role = self.__registry__[role]

 return target_role.agent.generate(messages)

 Agent Protocol is a protocol that enforces a single method:

class Agent(Protocol):

 """Generic interface for an agent."""

 system_prompt: SystemMessage

 messages: list[Message]

 def generate(self) -> AssistantMessage: ...

When calling router.navigate("poet", messages), the system performs the following:

•	 Role lookup: It fetches the Role object registered under "poet"

•	 Agent delegation: The router invokes the agent.generate(...) method using the pro-

vided message list

•	 Response return: The agent returns an AssistantMessage, which contains the model’s

response

This pattern not only decouples application logic from model logic but also allows you to register,

compose, and dynamically switch between specialized agents without duplicating infrastructure

or hardcoding behavior.

First, we need to implement an agent:

class GPT4oMiniAgent(Agent):

 system_prompt: SystemMessage = SystemMessage("You are a poet")

 client: OpenAI

 """

 An Agent that calls the 'gpt-4o-mini' model.

 It automatically inserts its default system prompt as the first
message.

 """

ADF Development Fundamentals166

 @staticmethod

def _convert_to_openai_message(msg: Message) -> Any:

 match msg:

 case SystemMessage():

 return {"role": "system", "content": msg.content}

 case AssistantMessage():

 return {"role": "assistant", "content": msg.content}

 case UserMessage():

 return {"role": "user", "content": msg.content}

 case _:

 raise ValueError(f"Unsupported message type: {type(msg)}")

def generate(self, messages: list[Message]) -> AssistantMessage:

 """

 Prepends the default system prompt, converts all messages

 to OpenAI schema, calls the model, and returns an AssistantMessage.

 """

 openai_messages = [self._convert_to_openai_message(self.system_
prompt)]

 for msg in messages:

 if openai_message := self._convert_to_openai_message(msg):

 openai_messages.append(openai_message)

 # Send to OpenAI

 response = self.client.chat.completions.create(

 model="gpt-4o-mini",

 messages=openai_messages,

 temperature=0.7,

)

 # Return the model's reply as an AssistantMessage

 return AssistantMessage(content=response.choices[0].message.content or
"")

Chapter 6 167

Then, define the execution flow again:

def main():

 # Create an agent and define its role

 openai_api_key = os.environ.get("OPENAI_API_KEY", "")

 openai = OpenAI(api_key=openai_api_key)

 agent = GPT4oMiniAgent()

 agent.client = openai

 poet_role = Role(name="poet", agent=agent)

 # Register the role

 router = RoleRouter()

 router.register(poet_role)

 # Build a conversation (no user system prompt needed; agent adds its
own)

 user_message = UserMessage("Create a haiku")

 conversation = [user_message]

 # Route the conversation

 answer = router.navigate("poet", conversation)

 print(f"User input: {user_message}")

 print("\nAgent answer:\n")

 print(answer)

Separating the framework into a package and introducing
the application context
At this stage, our code has matured enough to be separated into a proper Python package. This

marks the transition from a one-off script to a reusable, extensible framework.

We extract our core abstractions into a dedicated adf/ package. This includes message types,

agent protocols, the role router, and the Application class. Meanwhile, the application logic

stays cleanly in main.py, importing and using the framework like any other library. As we defined

in previous chapters, an application is our container that encapsulates all execution flow logic.

ADF Development Fundamentals168

The Application class acts as the central container – a simplified ApplicationContext holding

configuration and registration logic:

from types import SimpleNamespace

from .messages import Message, AssistantMessage

from .routers import RoleRouter, Role

class Application:

 """

 An Application holds:

 - a name (e.g. "poetic")

 - a RoleRouter for dispatching conversations to agents

 - a decorator-based registration mechanism to easily register new
roles/agents

 """

 settings = SimpleNamespace()

 def __init__(self, name: str):

 self.name = name

 self.router = RoleRouter()

 def register(self, role: str):

 """

 A decorator that accepts a role name (e.g. "poet"),

 instantiates the decorated Agent class, and registers it in the
RoleRouter.

 Usage:

 @app.register(role="poet")

 class PoetGPT4oMiniAgent(GPT4oMiniAgent):

 system_prompt = SystemMessage("You are a poet")

 """

 def decorator(agent_cls):

Chapter 6 169

 # Instantiate the agent

 instance = agent_cls()

 # If needed, we can check or set a system prompt here:

 # if not instance.is_ready:

 # instance.instruct(SystemMessage("You are ..."))

 # Register this instance with the router

 self.router.register(Role(name=role, agent=instance))

 return agent_cls

 return decorator

 def process(self, role: str, conversation: list[Message]) ->
AssistantMessage:

 """

 A simple convenience method to forward the conversation

 to the router and return the AssistantMessage result.

 """

 return self.router.navigate(role, conversation)

Here’s the package structure:

Figure 6.1: Package structure

ADF Development Fundamentals170

This is the first real example of a fully functioning application built on top of our framework. By

this point, we’ve extracted abstractions for messages, agents, routing, and the application context.

What we now have in main.py is not just a demo – it’s a clean, production-ready entry point that

communicates intent clearly and hides the complexity behind the framework’s design.

Let’s go through this example step by step.

We start by defining a base agent class, GPT4oMiniAgent, which is an implementation of our Agent

protocol. This agent does the following:

•	 Holds a system_prompt, which is required to shape the behavior of the model

•	 Converts domain-level message types (such as UserMessage, SystemMessage, etc.) into

OpenAI’s raw schema

•	 Sends the conversation to OpenAI’s gpt-4o-mini model

•	 Wraps the model’s response in our AssistantMessage abstraction

This base class doesn’t know it’s being used by a poet or a critic – it’s generic and reusable:

class GPT4oMiniAgent(Agent):

 client: OpenAI

 system_prompt: SystemMessage

 @staticmethod

 def _convert_to_openai_message(msg: Message) -> Any:

 match msg:

 case SystemMessage():

 return {"role": "system", "content": msg.content}

 case AssistantMessage():

 return {"role": "assistant", "content": msg.content}

 case UserMessage():

 return {"role": "user", "content": msg.content}

 case _:

 raise ValueError(f"Unsupported message type: {type(msg)}")

 def generate(self) -> AssistantMessage:

 """

 Prepends the default system prompt, converts all messages

 to OpenAI schema, calls the model, and returns an
AssistantMessage.

Chapter 6 171

 """

 openai_messages = [self._convert_to_openai_message(self.system_
prompt)]

 for msg in self.messages:

 if openai_message := self._convert_to_openai_message(msg):

 openai_messages.append(openai_message)

 # Send to OpenAI

 response = self.client.chat.completions.create(

 model="gpt-4o-mini",

 messages=openai_messages,

 temperature=0.7,

)

 return AssistantMessage(content=response.choices[0].message.
content or "")

@app.register(role="poet")

class PoetGPT4oMiniAgent(GPT4oMiniAgent):

 client = OpenAI(api_key=app.settings.openai_api_key)

 system_prompt = SystemMessage("You are a poet")

@app.register(role="critic")

class CriticGPT4oMiniAgent(GPT4oMiniAgent):

 client = OpenAI(api_key=app.settings.openai_api_key)

 system_prompt = SystemMessage("You are a critic of poetry")

In the main() function, we simulate a simple but realistic multi-turn agent scenario:

1.	 A user starts a conversation with the "poet" agent to generate a haiku.

2.	 The haiku is passed to the "critic" agent for evaluation.

3.	 The critic’s feedback is used to refine the original haiku by returning to the “poet”:

Step 1: build conversation

conversation = [UserMessage("Create a haiku")]

Step 2: direct to "poet" agent

answer = app.process("poet", conversation)

ADF Development Fundamentals172

print("Poet answer:", answer)

Step 3: user then asks for a critique

conversation.append(answer)

conversation.append(UserMessage("Can you critique the haiku?"))

Step 4: direct to "critic" agent

response = app.process("critic", conversation)

print("Critic answer:", response)

Step 5: Improve the haiku

conversation.append(response)

conversation.append(UserMessage("Can you improve the haiku?"))

Step 6: direct to "poet" agent again

response = app.process("poet", conversation)

print("Improved haiku:", response)

Here’s what the use of the framework gave us, both technically and in terms of developer expe-

rience:

•	 Separation of concerns: The agent logic (GPT4oMiniAgent) is completely decoupled from

how the role is routed or how the application is configured. This keeps our mental model

clean.

•	 Declarative role registration: Thanks to @app.register(role=...), agents are auto-reg-

istered just like Flask routes. There’s no need to manually update dictionaries or write

additional glue code – just subclass and decorate.

•	 Clean configuration: The Application.settings namespace provides an easy place to

stash environment-specific data (such as openai_api_key) that all agents can access.

There’s no hardcoded config logic in the agents themselves.

•	 Testability and extensibility.

With this architecture, it’s trivial to do the following:

•	 Add unit tests for Agent.generate()

•	 Substitute models (e.g., use Ollama or Azure)

•	 Log inputs and outputs per role

•	 Add caching, retries, or parsing logic – without touching the application logic

Chapter 6 173

The final main.py is extremely concise – but powerful. A developer using the framework doesn’t

need to understand the internals of routing or schema conversion to create a working multi-agent

LLM application.

In summary, this application is the first practical payoff of our framework effort. It gives us a

clean structure, ready for scaling and production deployment.

Packaging and distributing
One of the most exciting developments in Python tooling in recent years is the emergence of uv – a

next-generation package and project manager that’s redefining how Python developers manage

dependencies, environments, and builds.

uv is a modern, high-performance Python package manager and installer written in Rust. It serves

as a drop-in replacement for traditional Python package management tools such as pip, offering

significant improvements in speed, reliability, and dependency resolution.

uv is designed with performance in mind. Benchmarks show that uv can be 10–100 times faster

than traditional tools such as pip and pip-tools. This speed boost is achieved through efficient

dependency resolution, parallel downloads, and a global package cache that avoids redundant

installations.

uv consolidates the functionality of multiple tools:

•	 Dependency management: Replaces pip and pip-tools for installing and locking de-

pendencies

•	 Environment management: Supersedes virtualenv and pyenv by handling virtual en-

vironments and Python versions

•	 Script execution: Offers capabilities similar to pipx for running Python scripts with iso-

lated dependencies

•	 Project management: Provides features akin to poetry and twine for building and pub-

lishing packages

For more information, visit the official uv documentation at docs.astral.sh/uv and the GitHub

repository at github.com/astral-sh/uv.

To kickstart a new Python project with uv, you can use the uv init command. This command

sets up a standardized project structure, including essential files such as pyproject.toml and

README.md, and initializes a virtual environment. This approach streamlines project setup, en-

suring consistency and best practices from the outset.

docs.astral.sh/uv
github.com/astral-sh/uv

ADF Development Fundamentals174

By default, uv init sets up the project as an application. If you intend to create a library instead,

you can use the --lib flag:

uv init --lib

To enhance the quality, maintainability, and reliability of your Python projects, integrating a suite

of development tools is essential. Tools such as ruff, pytest with coverage support, and mypy

can significantly improve your code base by providing linting, testing, and static type checking

capabilities. Here’s how you can incorporate these tools into your project.

ruff is a lightning-fast Python linter and formatter written in Rust. It supports a wide range of

linting rules and can automatically fix many issues. ruff can replace several traditional tools,

such as Flake8, isort, and Black, streamlining your development workflow.

To enhance your Python project’s code quality, integrating tools such as mypy for static type

checking and pytest with coverage support is essential. These tools help catch errors early and

ensure your code is well tested. Here’s how you can set them up:

uv add --dev mypy pytest pytest-cov ruff

Add a dummy agent:

from adf.agents import Agent

from adf.messages import SystemMessage, Message, AssistantMessage

class DummyAgent:

 # Provide the required attributes.

 system_prompt = SystemMessage("dummy prompt")

 name = "dummy_agent"

 def generate(self, messages: list[Message]) -> AssistantMessage:

 # For testing purposes, simply join all message contents with a
separator.

 combined = " | ".join(str(msg) for msg in messages)

 return AssistantMessage(content=f"Dummy response: {combined}")

Chapter 6 175

To test our framework, we added just a few simple tests:

import pytest

from adf.app import Application

from adf.messages import UserMessage, SystemMessage, AssistantMessage

from adf.routers.role import Role

from adf.routers.router import RoleRouter, RoleIsNotRegisteredError

from tests.conftest import DummyAgent

def test_role_router_navigate_success():

 """

 Test that RoleRouter properly routes a conversation when the role is
registered.

 """

 # Initialize the router and register a dummy role.

 router = RoleRouter()

 dummy_role = Role(name="test", agent=DummyAgent())

 router.register(dummy_role)

 # Build a test conversation.

 conversation = [SystemMessage("Test system"), UserMessage("Test
user")]

 result = router.navigate("test", conversation)

 # Verify that the returned message is an AssistantMessage with the
expected content.

 assert isinstance(result, AssistantMessage)

 assert "Dummy response:" in result.content

def test_role_router_navigate_unregistered():

 """

 Test that navigating to an unregistered role raises
RoleIsNotRegisteredError.

 """

 router = RoleRouter()

ADF Development Fundamentals176

 conversation = [SystemMessage("Test system"), UserMessage("Test
user")]

 with pytest.raises(RoleIsNotRegisteredError):

 router.navigate("nonexistent", conversation)

def test_application_registration_and_process():

 """

 Test that the Application's registration decorator registers an agent,

 and the process method correctly routes the conversation.

 """

 # Create an Application instance.

 app = Application(name="test_app")

 # Use the decorator to register a dummy agent under the role "dummy".

 @app.register(role="dummy")

 class DummyAgentForApp(DummyAgent):

 system_prompt = SystemMessage("App dummy prompt")

 # Build a sample conversation.

 conversation = [UserMessage("Hello")]

 result = app.process("dummy", conversation)

 # Verify that the result is an AssistantMessage and that dummy
response is present.

 assert isinstance(result, AssistantMessage)

 assert "Dummy response:" in result.content

Linters checks:

(4.Packaging) ➜ 4.Packaging git:(main) ruff format --check

8 files already formatted

(4.Packaging) ➜ 4.Packaging git:(main) ruff check

All checks passed!

(4.Packaging) ➜ 4.Packaging git:(main) mypy .

Success: no issues found in 10 source files

Chapter 6 177

I strongly recommend setting up continuous integration (CI), for example, with GitHub Actions,

to automatically run tests and linters and handle package publishing to private or public repos-

itories. This greatly increases the reliability and maintainability of your code base, ensuring all

changes are validated before they reach production. However, CI configuration is beyond the scope

of this book. In open source projects, CI is not just a best practice – it’s practically a necessity for

managing contributions from many people. CI servers automatically build and test the software

whenever code is committed or a pull request is opened, providing immediate feedback on in-

tegration issues. Modern open source frameworks typically use services such as GitHub Actions,

GitLab CI, or CircleCI to run their test suites on multiple platforms. For example, Django’s CI

pipeline runs an extensive matrix of tests across supported Python versions, database backends,

and operating systems to ensure that a change doesn’t break compatibility. Every proposed code

change must pass all these checks before it’s merged. By catching integration problems (failing

tests, lint errors, etc.) early, the project maintains a stable main branch despite rapid iterative

development.

Run tests:

uv run pytest

This is our test coverage:

Figure 6.2: Test coverage

For an improved development experience, you may also want to configure pre-commit hooks.

These tools run linters, formatters, and type checkers automatically before every commit, catching

issues early and enforcing consistent coding standards across your team.

ADF Development Fundamentals178

Code review tools integrated into these platforms (such as GitHub’s review interface) make the

review process efficient, with inline comments, suggestions, and the ability to require certain

checks (tests passing and approvals given) before merge. Many projects also enable bots for routine

tasks – for example, a bot that automatically labels new issues, or one that pings reviewers if a

pull request is stale. Some use continuous quality tools: for example, coverage reporting services

that comment on a pull request if coverage drops, or security scanners that alert of vulnerable

dependencies. These automations act like additional team members, handling XP chores (such

as running all tests and checking standards) so humans can focus on creative work.

As for packaging, I’ll stop short of automation and simply build the package manually using the

following:

uv build

This command generates your distribution files, ready for publishing or installation. uv serves

as a fast, modern alternative to setuptools and poetry, handling everything from dependency

resolution to packaging in a single binary. For more information about its full capabilities, refer

to the official documentation at https://docs.astral.sh/uv/.

Libraries and transports
It’s time to evolve our toy framework into a production-ready skeleton.

We’ll integrate two building blocks:

•	 An OpenSearch-backed vector store for fast k-nearest neighbors (kNN) retrieval

•	 An HTTP transport layer that exposes each agent as a REST endpoint

With these pieces in place, the architecture moves from “demo” to something a real application

can stand on.

Let’s first define the embeddings protocol and its implementation:

from collections.abc import Iterable, Sequence

from typing import Protocol

class Embeddings(Protocol):

 """Turns text into one or more dense vectors."""

 dimensions: int

https://docs.astral.sh/uv/

Chapter 6 179

 def embed(self, texts: Iterable[str]) -> Sequence[Sequence[float]]:

 """Turns text into one or more dense vectors."""

Then, establish a protocol for integrating the OpenAI embeddings model with the OpenSearch

vector database:

class OpenAIEmbeddings(Embeddings):

 """OpenAI embedding model."""

 dimensions = 768

 model: str = "text-embedding-3-small"

 openai_client: OpenAI

 batch_size: int = 100

 def embed(self, texts: Iterable[str]) -> Sequence[Sequence[float]]:

 out = []

 for chunk in self._chunk(texts, self.batch_size):

 out.extend(self._call(chunk))

 return out

 @staticmethod

 def _chunk(it: Iterable[str], n: int) -> Iterable[list[str]]:

 chunk = []

 for item in it:

 chunk.append(item)

 if len(chunk) == n:

 yield chunk

 chunk.clear()

 if chunk:

 yield chunk

 def _call(self, batch: list[str]) -> list[list[float]]:

 resp = self.openai_client.embeddings.create(model=self.model,
input=batch, dimensions=self.dimensions)

 return [d.embedding for d in sorted(resp.data, key=lambda d:
d.index)]

ADF Development Fundamentals180

And vector store protocols and it’s implementation:

from collections.abc import Iterable

from typing import Protocol

from adf.rag.vectorstore.embeddings.protocol import Embeddings

class VectorStore(Protocol):

 """Stores vectors, returns texts of the most similar items."""

 embeddings: Embeddings

 def index(self, texts: Iterable[str]) -> None:

 """Stores vectors, returns texts of the most similar items."""

 def search(self, query: str, k: int = 5) -> list[str]:

 """Returns texts of the most similar items."""

@dataclass

class OpenSearchVectorStore(VectorStore):

 """OpenSearch vector store."""

 os: OpenSearch

 index_name: str

 def ensure_index(self) -> None:

""" Check if an index and mappings are created """

 if not self.os.indices.exists(self.index_name):

 self.os.indices.create(

 self.index_name,

 body={

 "mappings": {

 "properties": {

 "vector": {

 "type": "knn_vector",

Chapter 6 181

 "dimension": self.embeddings.dimensions,

 "method": {"name": "hnsw", "engine":
"nmslib"},

 },

 "text": {"type": "text"},

 }

 }

 },

)

 def index(self, texts: Iterable[str]) -> None:

 vectors = self.embeddings.embed(texts)

 bulk_body = []

 for text, vec in zip(texts, vectors, strict=False):

 _id = str(uuid.uuid4())

 bulk_body.extend(

 [

 {"index": {"_index": self.index_name, "_id": _id}},

 {"vector": vec, "text": text},

]

)

 self.os.bulk(bulk_body, refresh=True)

 def search(self, text: str, k: int = 5) -> list[str]:

 vector = self.embeddings.embed([text])[0]

 resp = self._os.search(

 index=self.index_name,

 body={

 "size": k,

 "query": {"knn": {"vector": {"vector": vector, "k": k}}},

 "_source": ["text"],

 },

)

 return [hit["_source"]["text"] for hit in resp["hits"]["hits"]]

ADF Development Fundamentals182

To implement the transport layer, the application context should be extended with the FastAPI

component. First, define the message formats:

class _MessageIn(BaseModel):

 role: str

 content: str

 def to_domain(self) -> Message:

 if self.role == "user":

 return UserMessage(self.content)

 if self.role == "system":

 return SystemMessage(self.content)

 if self.role == "assistant":

 return AssistantMessage(self.content)

 msg = f"unknown role {self.role}"

 raise ValueError(msg)

class _AnswerOut(BaseModel):

 content: str

The next step involves registering the appropriate routes and assigning the corresponding roles:

def decorator(agent_cls: type[T]) -> type[T]:

 instance = agent_cls()

 self.router.register(Role(name=role, agent=instance))

 base_path = f"/{role}"

 @self.fastapi.post(base_path, response_model=_AnswerOut,
tags=["agents"])

 async def _dialog(messages: list[_MessageIn]) -> _AnswerOut:

 try:

 answer = self.process(role, [m.to_domain() for m in messages])

 except Exception as exc: # pragma: no cover

 raise HTTPException(500, str(exc)) from exc

 return _AnswerOut(content=str(answer))

Chapter 6 183

 if isinstance(instance, RagMixin):

 @self.fastapi.post(f"{base_path}/index", response_model=_
AnswerOut, tags=["agents"])

 async def _index(documents: list[Document]) -> _AnswerOut:

 try:

 instance.index_documents(documents)

 except Exception as exc: # pragma: no cover

 raise HTTPException(500, str(exc)) from exc

 return _AnswerOut(content="Documents indexed successfully.")

 return agent_cls

return decorator

We can now use our framework in this manner:

if __name__ == "__main__":

 import uvicorn

 uvicorn.run(app.fastapi, host="0.0.0.0", port=8000)

While this example lays the groundwork for understanding basic mechanics, it’s still far from

resembling a real-world development process. In practice, effective software delivery also requires

solid organizational principles to structure collaboration, workflows, and decision-making at scale.

Embracing agile principles for responsive
development
Open source framework projects often mirror Agile and Extreme Programming (XP) values: itera-

tive releases, early and frequent feedback, and high code quality. But open source teams are often

geographically distributed, have no single on-site customer, and communicate asynchronously.

Agile emphasizes frequent delivery of working software and readiness for change. In open source,

this appears as “release early, release often.” Users act as stakeholders, providing immediate

feedback via issues or pull requests, thus creating a tight feedback loop.

ADF Development Fundamentals184

This enables quick feedback from users and contributors on new features or fixes. Unlike a tradi-

tional Agile team that might have a product owner providing requirements, open source projects

treat their user community as the customer. Active users report issues, request enhancements, and

even contribute code – effectively serving the role of stakeholders in directing development. The

result is a tight feedback loop: maintainers iteratively implement changes and users immediately

try them out and give input via issue trackers, forums, or chat.

As we complete the initial design of our agent framework and demonstrate it in a working applica-

tion, we enter a new phase: iterative, production-informed development. Rather than assuming

all features in advance, we treat the current implementation as a functional prototype – one that’s

stable enough to be adopted in real-world applications. These applications serve not only as a

proof of concept but also as valuable feedback loops. Developers using the framework surface

missing abstractions, edge cases, or specialized needs that we may not have initially considered.

While open source adoption can begin even before a framework is feature-complete, it’s critical

that the current version solves at least one problem from end to end. A partially implemented

framework becomes viable for early adopters in the following instances:

•	 It addresses a real use case fully (e.g., implements an agent that completes a specific task

with minimal friction)

•	 Its interfaces are stable and composable

•	 Gaps are clearly documented so that downstream developers can extend or customize

behavior where needed

From there, we extend the core iteratively: introducing reference implementations (e.g., tested

and recommended agent classes), as well as optional libraries that bring in support for external

APIs and ecosystems – such as OpenAI, Gemini, Claude, or AWS Bedrock. The core remains small

and stable, while external functionality is layered through modular packages. This model ensures

a clear boundary between framework and integration code, allows different teams to contribute

new capabilities without touching core internals, and supports a “batteries optional” philosophy

– the framework works out of the box but can grow indefinitely in power.

Another aspect of feedback loops in open source is the practice of releasing preview or beta ver-

sions. Many frameworks (such as Django) publish release candidates for upcoming versions and

call on the community to test them.

Chapter 6 185

Figure 6.3: Evolution of a framework

This mirrors the XP idea of “rapid feedback” by exposing work in progress to real users early.

Problems can be identified before final release, and the project can course-correct if needed. In-

deed, open source development relies on the idea that given enough eyes, all bugs are shallow – wide

community exposure leads to bugs being found and fixed faster. In Agile terms, the community

acts as an extended QA and feedback team. Researchers have noted that presenting code changes

to many developers and users (as open source projects do) is an effective form of peer review that

catches issues early, reinforcing the value of frequent iterations and review cycles.

Open source development exemplifies the XP concept of collective code ownership. No single

developer “owns” a component of the framework; instead, the code is collectively owned and

maintained by the community. This philosophy is evident in how open source projects grant com-

mit rights and handle contributions. Core teams are usually small, but they act more as stewards

than exclusive owners – they review and merge contributions from anyone in the community.

Over time, frequent contributors are often invited to become core committers themselves. The

Django project’s governance, for example, ensures that there are always multiple maintainers

(called mergers) to spread knowledge and avoid over-burdening individuals. There is even an

explicit goal to prevent burnout by having a minimum of three active mergers and no upper limit,

emphasizing that responsibility for the code base should be distributed, not concentrated. This

broad ownership model means any qualified person can fix a bug or improve a module, regardless

of who originally wrote it – fostering a sense of collective responsibility for quality.

ADF Development Fundamentals186

Shared code ownership does come with the need for clear coding standards and processes. Most

frameworks define a style guide (PEP 8 for Python projects, ESLint/Prettier configs for JavaScript,

etc.) and use automated linters/formatters to ensure consistency. They also often require that

significant changes go through a design discussion (e.g., Django’s DEP – Django Enhancement

Proposal – process for major features) so that the architecture remains coherent. In essence, while

everyone can contribute, the community agrees on the rules of contribution and design upfront.

This balance of openness and control allows many hands to work on the code base without it

degenerating into chaos.

Drawing from the preceding exploration, several key factors emerge that help open source frame-

work teams stay responsive to users and maintain code excellence over time:

•	 Comprehensive automated testing: A strong automated test suite (with unit, integration,

and system tests) is the safety net for fast iteration. It allows fearless refactoring and fre-

quent releases because regressions are caught early. High coverage and CI enforcement

of tests ensure that contributions improve the project without breaking it. Studies show

TDD and thorough testing directly improve quality in open source, and successful projects

such as Django treat tests as non-negotiable for every change.

•	 CI pipelines: Investing in reliable CI infrastructure pays huge dividends. CI provides

immediate feedback on each commit, enforcing a standard of “no broken builds.” It also

enables multiple-platform support and quick compatibility fixes. By automating builds,

tests, linting, and even deployments, the project reduces manual effort and errors. Mod-

ern CI tools (GitHub Actions, etc.) integrated with version control are a big enabler for

distributed teams, keeping everyone informed of build status and freeing maintainers

from running tests themselves.

•	 Strong code review and coding standards: A culture of thorough code reviews not only

improves code quality but also spreads knowledge. Requiring at least one other person

to approve a change (as many projects do) prevents blind spots. Clear coding standards

and style guides (often enforced by linters/formatters in CI) mean that when code from

many authors comes together, it appears consistent and is easier to maintain. Respectful,

constructive code reviews also serve as mentorship, upgrading the skills of contributors

over time – a virtuous cycle for the community.

Chapter 6 187

•	 Frequent releases and feedback incorporation: Releasing updates regularly (with clear

release notes) keeps the community engaged and provides constant feedback. “Release

early, release often” prevents backlog bloat and allows the project to course-correct quickly

if a change is not well received. It also gives users confidence that the project is active

and responsive. Even if not every release is packed with features, the habit of frequent

small releases is healthier than infrequent big-bang releases. Many frameworks adopt

semantic versioning and schedule periodic minor releases, which establishes a rhythm

the community can rely on.

•	 Transparent road mapping and issue tracking: Openness about what the team is working

on and what is planned builds trust with users. Public roadmaps, or at least a curated set

of “important upcoming issues,” help focus the community’s efforts. It also invites early

feedback – if users see a change coming, they can voice concerns or excitement, guiding

the implementation. Effective use of an issue tracker, with labels and milestones, turns it

into a collaborative to-do list that anyone can contribute to. This aligns with Agile backlog

grooming but in a public, crowdsourced manner.

•	 Tooling to support distributed work: Successful projects reduce friction for contributors.

Scripts to set up a dev environment, run tests locally (as FastAPI provides), or generate

documentation make it easier for anyone to jump in. Integration of docs with code (such

as FastAPI testing its documentation examples as part of the test suite) ensures documen-

tation stays up to date and lowers user support burden. Communication tools (chat and

forums) for quick help and CI bots for routine tasks all improve the contributor experience.

When contributing feels smooth and rewarding, more people participate – increasing the

project’s bus factor and resilience.

Summary
In this chapter, we delved into essential techniques for effectively prototyping ADFs. The pro-

cess begins by identifying and abstracting reusable patterns from concrete applications, which

serve as the foundation for a robust framework. Through iterative refinement, we introduced

structured message types and clear execution flows, evolving from minimal working examples

to comprehensive, composable agent-oriented structures.

Key concepts included defining core abstractions, employing role-based routing for dynamic and

specialized agent interactions, and structuring the framework into a cohesive, reusable Python

package. The chapter also emphasized best practices using modern Python tooling such as uv for

dependency management, pytest for automated testing, and ruff for linting and code quality.

ADF Development Fundamentals188

Furthermore, we highlighted Agile principles, emphasizing frequent feedback loops, transparent

community-driven development, CI, and robust automated testing strategies. The importance

of a secure system development life cycle (SSDLC) was underscored, recommending proactive

security measures, tooling integration across different language ecosystems, secure CI/CD prac-

tices, and clear incident response and vulnerability disclosure procedures.

By mastering these techniques, you will be capable of developing frameworks that are not only

functional and efficient but also resilient and secure, able to adapt effectively to emerging tech-

nological challenges.

In the next chapter, we build on the foundational architecture and modular principles explored

previously, and shift our focus toward practical implementation. This includes defining agent

roles, implementing dynamic prompt flows, and integrating role-specific behavior across the

framework. The goal is to evolve our ADF from a modular skeleton into a flexible, intelligent

system that adapts to context and user needs. By the end of the chapter, you’ll be equipped

to build extensible workflows that support smart reasoning, stateful interaction, and scalable

component orchestration.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

7
Documenting and Releasing
a Framework

Building the framework in the lifecycle of an application development framework (ADF) is only

the beginning. Proper documentation and release management are paramount to ensure its long-

term success and adoption. Without well-documented features and a structured approach to

managing releases, even the most innovative frameworks can fail to deliver their intended value.

This chapter provides a comprehensive guide to creating adequate documentation and imple-

menting robust release management practices. By focusing on tools, platforms, and best practices,

we aim to help you make an ADF that is not only functional but also user-friendly, transparent,

and easy to maintain.

As we know, the primary purpose of frameworks is to deal with systems complexity and simpli-

fy application developers’ work, and documentation is clearly a significant contributor to this

mission.

Meanwhile, strategic release management ensures that updates are predictable, stable, and

well-communicated, fostering trust and confidence among users.

Drawing on insights from successful ADF projects, this chapter covers the tools and methodol-

ogies needed to build strong documentation and manage releases effectively. From leveraging

GitLab Pages and Sphinx for documentation to mastering API documentation and adopting

versioning strategies, you will learn how to make your framework an indispensable asset to your

organization and its developers.

Documenting and Releasing a Framework190

This chapter will cover the following topics:

•	 Establishing a robust documentation foundation

•	 Step-by-step guide: Building and maintaining ADF documentation

•	 Developing and optimizing API documentation for clarity and usability

•	 Implementing effective versioning and release strategies

With these capabilities, your ADF will not only deliver on its promises but also inspire confidence

and trust among its users and stakeholders.

Establishing a robust documentation foundation
The success of any ADF depends not only on its technical capabilities but also on how easily devel-

opers can adopt and integrate it into their workflows. The primary purpose of ADF documentation

is to ensure that application developers can use the framework efficiently and autonomously.

Well-structured and accessible documentation minimizes reliance on framework developers,

preventing them from becoming a bottleneck in ADF adoption.

When application developers struggle to find the information they need, they either abandon

the framework in favor of alternatives or continuously seek support from the framework team.

Both scenarios slow down adoption and reduce the framework’s overall impact. By providing

clear, actionable documentation, ADF developers empower their users to explore, integrate, and

extend the framework independently, leading to greater efficiency and smoother onboarding.

Good documentation is not merely an auxiliary feature but a core enabler of the framework’s

intended value. It guides developers through best practices, prevents common pitfalls, and aligns

expectations about how the framework should be used. Moreover, it enhances the perception

of professionalism and stability, increasing the likelihood of adoption within an organization.

Beyond onboarding, documentation plays a crucial role in ensuring long-term maintainability. As

teams change and projects evolve, having a reliable knowledge base prevents the accumulation

of technical debt and reduces the risk of knowledge silos. In this way, robust documentation

directly contributes to the sustainability of the ADF.

Documentation as a continuation of an ADF
Documentation is not an isolated “optional” piece of deliverables. It is a component of an ADF;

it is a natural extension of the framework itself. A well-documented framework reduces friction

for new adopters, supports efficient collaboration among teams, and improves engineering ef-

ficiency. In this sense, documentation should be considered part of the ADF’s architecture, just

like its core abstractions and API design.

Chapter 7 191

Figure 7.1: From documentation to a framework maturity ladder

I would suggest looking at ADF documentation as a “phase zero” framework implementation:

when there is no framework code yet, but guidance on how to build an application according to

the future framework structure and principles.

To continue developing this perspective, there might be the following heuristic for prioritizing

documentation efforts as the documentation-to-automation maturity ladder:

•	 Documentation: If a process is essential but not yet automated, it should be well docu-

mented to provide guidance

•	 Validation: If we need to ensure that a non-automated process is in place, we can add

validation for manual parts (static checks, strict formats, and runtime validation)

•	 Automation: If a documented process is repetitive and error-prone, it should at least be

covered by scripts providing shortcuts to the correct process implementation (such as

management commands in Django or console commands in many other frameworks that

are run manually outside of the ADF-driven implementation flow)

•	 Implementation (integration): If a process is fully integrated in the ADF implementation,

it may no longer require extensive documentation beyond high-level conceptual guidance,

as well as automation to be run aside of the ADF

Documenting and Releasing a Framework192

This approach helps focus documentation efforts on areas that truly need clarification – those

parts of the framework that cannot be automated or require human decision-making. By treating

documentation as an evolving asset rather than a static one, ADF developers can avoid overloading

users with unnecessary details while ensuring that essential concepts remain accessible.

Types of documentation
Not all documentation serves the same purpose, and understanding its different types can help

create a well-balanced knowledge base. ADF documentation can be categorized into four primary

types, each addressing distinct needs:

•	 How-to guides: These are practical, task-oriented instructions that help developers

achieve specific goals using the framework. Examples include “How to Set Up Your First

ADF Project” and “How to Add a Custom Processor to the ADF Pipeline.” These guides

should be concise and focused, with step-by-step instructions and real-world examples.

•	 Tutorials: Unlike how-to guides, tutorials are designed to introduce new users to the

framework through structured, progressive learning. They walk the user through a com-

plete use case, helping them build confidence in the framework’s capabilities. A well-craft-

ed tutorial answers the question, “Where do I start?” and should prioritize accessibility

over comprehensiveness. This kind of document is also known as “Hello World” guides.

•	 Reference documentation: This is the technical backbone of ADF documentation, covering

API specifications, configuration parameters, and internal architecture details. It should

be exhaustive and precise, offering answers to developers who already know what they

are looking for. Automated documentation generation tools such as Sphinx (for Python)

or Docusaurus (for JavaScript) can ensure that reference materials remain up to date with

the framework’s code base.

•	 Explanations and conceptual documentation: This type of documentation offers the

theoretical context, design rationales, and architectural principles behind the framework.

It aids developers in understanding why the ADF functions as it does. Unlike reference

documents, which address “What does this do?” and how-to guides that tackle “How do

I do this?”, conceptual documentation responds to “Why is it designed this way?”.

Each type of documentation plays a unique role in supporting ADF adoption. A balanced approach

ensures that developers can smoothly transition from onboarding to mastery, with each piece of

documentation fulfilling a clear purpose.

Chapter 7 193

By aligning your documentation strategy with your framework’s maturity, you ensure that devel-

opers get the information they need when they need it most, from getting started with a simple

tutorial to understanding deep architectural concepts for advanced integration.

Documentation focus by ADF maturity level
Documentation

Type
Level 2: MVF

Level 3: Bullet-

proof

Level 4:

Advanced

Level 5:

Ecosystem

Explanations/

conceptual docs
Basic (README)

Growing

importance of

extensibility

Critical for

architects

and senior

developers

Foundational;

guides the entire

ecosystem

Tutorials

Critical for

initial adoption

and “Hello

World”

Still vital for

onboarding; more

topics appear

Specialized

tutorials

for complex

features

The community

may contribute

diverse tutorials

How-to guides

Minimal; often

covered by the

tutorial

Essential for

new features and

common tasks

Numerous

guides for

advanced

integrations

Covers a vast

range of use cases,

often by the

community

Reference

documentation

Foundational

but can be

minimal (auto-

gen)

Must be robust,

accurate, and

well-maintained

Exhaustive and

versioned

Comprehensive,

searchable library

Table 7.1: Document focus by ADF maturity level

Automating documentation generation
Automating the generation of API documentation ensures that it remains consistent with the

code base, reducing the risk of discrepancies and outdated information. Several tools can assist

this process by extracting information directly from the source code or standard specifications

to produce comprehensive documentation.

Documenting and Releasing a Framework194

The following are some tools that facilitate this process. Please use the list as an example of what

you might need, not as a recommendation or promotion of particular vendors:

•	 Sphinx (https://www.sphinx-doc.org/): Sphinx is a documentation generator that

transforms reStructuredText (reST) files into various output formats, including HTML

and PDF. Originally created for Python documentation, it has been adopted by many proj-

ects for its extensibility and support for automatic code documentation. Usage examples

include the following:

•	 Python: The official Python documentation is built using Sphinx, showcasing its

capability to handle large and complex documentation needs

•	 Django: Django employs Sphinx to generate comprehensive documentation for

its web framework, aiding developers in understanding and utilizing its features

•	 YARD (https://yardoc.org/): YARD is a documentation generation tool for the Ruby

programming language. It enables users to generate consistent, usable documentation

that can be exported to various formats easily. YARD supports extending for custom Ruby

constructs, such as custom class-level definitions. Usage examples include the following:

•	 Ruby on Rails: Many Ruby on Rails projects utilize YARD to maintain clear and

concise API documentation, facilitating better collaboration and code maintenance

•	 Puppet: Puppet uses YARD to document its code base, providing users with ac-

cessible and well-structured documentation

•	 Javadoc (https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.

html): Javadoc is a documentation generator for generating API documentation in HTML

format from Java source code. It parses the declarations and documentation comments in

a set of source files to produce a corresponding set of HTML pages describing the classes,

interfaces, constructors, methods, and fields. Usage examples include the following:

•	 Java standard library: The official Java API documentation is generated using

Javadoc, providing a consistent and comprehensive reference for developers

•	 Android SDK: The Android SDK utilizes Javadoc to document its classes and meth-

ods, aiding developers in building Android applications

•	 DocFX (https://dotnet.github.io/docfx/): This is a modern, open source documen-

tation generation tool for .NET projects, including C#. It builds documentation from both

triple-slash code comments (///) in your source code and from separate Markdown files,

creating a unified documentation website. Usage examples include the following:

https://www.sphinx-doc.org/
https://yardoc.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html
https://dotnet.github.io/docfx/

Chapter 7 195

•	 .NET: Microsoft uses DocFX to generate the official .NET reference documentation,

showcasing its scalability for large projects

•	 Unity projects: Developers using the Unity engine often leverage DocFX to create

documentation for their C# scripts and game logic

•	 TypeDoc (https://typedoc.org/): This is a popular documentation generator specif-

ically for TypeScript projects. It reads JSDoc or TSDoc comments from your TypeScript

source code and generates a static HTML website detailing your project’s modules, classes,

interfaces, and methods. Usage examples include the following:

•	 RxJS: This widely used reactive programming library uses TypeDoc to generate

its extensive and well-structured API documentation

•	 Angular libraries: Many libraries within the Angular ecosystem rely on TypeDoc

to automatically generate clear API documentation from their TypeScript source

•	 Doxygen (https://www.doxygen.nl/): Doxygen is a documentation generator for various

programming languages, including C++, C, Java, and Python. It extracts comments from

the source code and generates documentation in multiple formats, such as HTML and

LaTeX. Usage examples include the following:

•	 Drupal: Drupal uses Doxygen to generate its extensive documentation, assisting

developers in understanding and utilizing the framework effectively

•	 OpenCV: OpenCV employs Doxygen to maintain its API documentation, providing

clear guidance for developers working with computer vision libraries

Implementing these tools involves integrating them into the development workflow, ensuring

that documentation is generated automatically as part of the build or deployment process. This

practice guarantees that the documentation reflects the current state of the API, providing de-

velopers with accurate and reliable resources.

This kind of tool is a “must-have” setup for any framework, corporate or open source.

Using source control systems for documentation publishing
and hosting
For teams that prefer a fully integrated workflow, documentation can be published and hosted

using source control systems such as GitHub, GitLab, and Azure DevOps. These platforms provide

built-in solutions for hosting documentation alongside source code, ensuring that documentation

remains synchronized with development efforts.

https://typedoc.org/
https://www.doxygen.nl/

Documenting and Releasing a Framework196

We also recommend choosing this option as the first choice for early-stage development to lever-

age your current well-known toolset and minimize investment in new technology.

•	 GitHub Pages: GitHub Pages is a free static site hosting service that can publish Mark-

down-based documentation directly from a GitHub repository. Examples include open

source projects that use GitHub Pages with Jekyll to host API documentation.

•	 GitLab Pages: Similar to GitHub Pages, GitLab Pages allows developers to host static

websites directly from a GitLab repository. Usage examples include the official GitLab

documentation, which is hosted using GitLab Pages.

•	 Azure DevOps Wiki: Azure DevOps includes a built-in Wiki feature that allows teams

to create and maintain technical documentation within their DevOps projects. Usage is

mainly around enterprise DevOps teams: they often use Azure DevOps Wiki for API and

internal process documentation. Refer to the guide on how to publish auto-generated

docs from your code repository to the wiki: https://learn.microsoft.com/en-us/azure/

devops/project/wiki/publish-repo-to-wiki.

Figure 7.2: Document generation sequence diagram

https://learn.microsoft.com/en-us/azure/devops/project/wiki/publish-repo-to-wiki
https://learn.microsoft.com/en-us/azure/devops/project/wiki/publish-repo-to-wiki

Chapter 7 197

Let’s look at how it works:

•	 Developers commit new code with embedded documentation comments.

•	 The repository (GitHub, GitLab, or Azure DevOps) triggers the CI/CD pipeline.

•	 CI/CD invokes a documentation generator (Sphinx, YARD, Javadoc, Swagger, etc.).

•	 The generated documentation is formatted (HTML, Markdown, PDF, or interactive API

docs).

•	 The CI/CD system publishes the docs to one of the deployment targets:

•	 GitHub Pages (for open source and public projects)

•	 GitLab Pages (for internal and external documentation)

•	 Azure DevOps wiki (for enterprise collaboration)

•	 End users (developers, architects, and stakeholders) access the latest documen-

tation.

This set of tools covers both corporate-owned ADFs that are not intended to be published (yet),

as well as OSS ones.

End-to-end generation, publishing, and hosting
Alternative tooling, focused on complementary documentation, is available for documenting

mature frameworks ready to become a core of runtime platforms (see the next section for details).

Several tools support this workflow, providing automated pipelines for effectively generating,

publishing, and hosting documentation:

•	 Docusaurus (https://docusaurus.io/): Docusaurus is an open source static site gener-

ator optimized for documentation websites. It supports Markdown and provides features

such as versioning, localization, and search, making it easy to maintain high-quality

documentation for long-term projects. Usage examples include the following:

•	 Meta (Facebook): Meta uses Docusaurus to ensure structured and searchable docs for

several of its open source projects

•	 React Native: This employs Docusaurus to maintain its documentation website, offering

developers an intuitive and well-organized reference

•	 MkDocs (https://www.mkdocs.org/): MkDocs is a fast, simple static site generator geared

toward project documentation. Written in Python, it supports Markdown, various themes,

and plugins. It integrates well with Git-based workflows, making it ideal for version-con-

trolled projects. Usage examples include the following:

https://docusaurus.io/
https://www.mkdocs.org/

Documenting and Releasing a Framework198

•	 Material for MkDocs: This is a popular extension used by many open source projects to

create sleek and modern documentation portals

•	 Python libraries: Various Python projects use MkDocs for lightweight yet effective doc-

umentation

•	 Document360 (https://document360.com/): Document360 is a cloud-based knowledge

management platform designed for creating, publishing, and maintaining technical doc-

umentation. It supports Markdown, WYSIWYG editing, version control, and role-based

access. It also has a free tier and supports start-ups and individual contributors. Usage

examples include the following:

•	 Microsoft Azure: This uses Document360 for internal and external API documentation

•	 Harvard University: This employs Document360 to manage API documentation across

multiple teams

•	 ReadMe (https://readme.com/): ReadMe is a documentation-as-a-service platform

that provides an interactive and user-friendly experience for API consumers. It includes

an API explorer, real-time updates, and analytics to track how documentation is being

used. Usage examples include the following:

•	 Intercom: This uses ReadMe to provide developers with dynamic API documentation

•	 Segment: This leverages ReadMe for structured API documentation and user-friendly

navigation

Figure 7.3: Static site generation sequence diagram

https://document360.com/
https://readme.com/

Chapter 7 199

Navigation and search for ADF documentation
Even the most well-written documentation is useless if users cannot find the information they

need quickly. Effective navigation and search capabilities are essential for making ADF docu-

mentation accessible, ensuring that developers, architects, and other stakeholders can efficiently

locate relevant guides, references, and tutorials. Without a structured approach to organizing

content and robust search functionality, documentation can become a bottleneck instead of a

productivity booster.

Structuring navigation for ADF documentation
A well-structured documentation portal should be hierarchical and task-oriented, catering

to both new users (who need tutorials and onboarding guides) and experienced users (who

require quick access to reference documentation and advanced use cases). A common approach

is to divide documentation into four primary sections:

•	 Getting started: Tutorials, quick-start guides, and installation instructions

•	 Core concepts: Architectural overviews, fundamental principles, and best practices

•	 How-to guides: Step-by-step solutions for specific tasks and integrations

•	 API/reference documentation: Automatically generated function and method references

Many frameworks, such as Django and Spring Boot, use this structured approach to ensure logical

progression from beginner-friendly tutorials to advanced technical references.

 Quick tip: Need to see a high-resolution version of this image? Open this book in the next-gen

Packt Reader or view it in the PDF/ePub copy.

 The next-gen Packt Reader and a free PDF/ePub copy of this book are included with your pur-

chase. Scan the QR code OR visit packtpub.com/unlock, then use the search bar to find this book

by name. Double-check the edition shown to make sure you get the right one.

http://packtpub.com/unlock

Documenting and Releasing a Framework200

Enhancing search with indexing and metadata
For larger documentation sets, full-text search with indexing is critical. Tools such as Algolia

Search (used in Docusaurus), Elasticsearch, or Lunr.js (for MkDocs and Jekyll sites) significantly

improve searchability in the following ways:

•	 Providing instant, predictive search suggestions as users type

•	 Indexing Markdown and API documentation content, ensuring quick retrieval

•	 Supporting filters by category (e.g., API methods vs. troubleshooting guides)

Many modern documentation platforms, such as ReadMe.com, Document360, and GitBook,

integrate context-aware search, allowing users to refine queries based on documentation type,

making it easier to locate code snippets, tutorials, or deep-dive explanations.

Cross-linking and contextual navigation
Beyond search, effective internal linking ensures users naturally discover related topics. Some

best practices include the following:

•	 “See Also” sections linking related documentation pages

•	 Breadcrumb navigation to help users track where they are within the hierarchy

•	 Inline tooltips that define key terms without requiring users to leave the page

For example, Kubernetes documentation effectively uses deep linking to connect high-level

concepts with CLI references, enabling seamless transitions between conceptual overviews and

practical commands.

By implementing intuitive navigation, powerful search capabilities, and structured cross-linking,

ADF documentation can become a highly usable, developer-friendly resource, reducing onboarding

time and minimizing support requests.

Step-by-step guide: Building and maintaining ADF
documentation
Creating and maintaining high-quality documentation for an ADF requires a structured and it-

erative approach. This guide outlines key activities to ensure that documentation remains clear,

comprehensive, and up to date while supporting different stakeholders, from architects to ap-

plication developers. Without clear, structured, and regularly updated documentation, even the

most well-designed frameworks risk low adoption rates and increased maintenance burdens. In

Chapter 7 201

this section, we outline the key activities required to build and sustain an effective documentation

system, covering high-level conceptual descriptions, architecture references, practical guides,

automated reference documentation, and ongoing maintenance strategies.

Creating a concept-level description
This is a high-level overview of the ADF, typically stored as a README.md file in the repository root

or a landing page of the dedicated ADF website.

The first step in documentation is establishing a concept-level description that provides a big-pic-

ture view of the framework. This document should be tailored for CTOs, architects, and senior

engineers, giving them insights into the following:

•	 The purpose of the ADF: Why was this framework created, and what problems does it

solve?

•	 Core principles and design philosophy: What fundamental ideas guide its development?

What architectural patterns, best practices, and trade-offs have been made?

•	 Key capabilities and limitations: What can developers expect from the framework?

•	 How the ADF fits into the broader system landscape: How does this ADF fit within

existing software systems?

For example, Django’s official README file succinctly introduces it as “a high-level Python Web

framework that encourages rapid development and clean, pragmatic design,” immediately set-

ting expectations for potential adopters. Similarly, React’s documentation provides a brief but

powerful summary of why a developer might choose it, highlighting its declarative nature and

component-based architecture.

Here are some best practices:

•	 Keep this document concise but informative, focusing on what the framework does rather

than how it works in detail. Avoid including every link and reference; this is not intended

as an index for your ADF documentation.

•	 Incorporate diagrams as needed (utilizing Mermaid.js, PlantUML, or Excalidraw for visual

representation), but limit them to conceptual-level illustrations. Detailed architectural

descriptions and diagrams should be included in the reference materials.

•	 Make sure the document is version-controlled and updated simultaneously with signif-

icant ADF changes updates.

Documenting and Releasing a Framework202

As a bonus, you can always add some fancy promo materials as concept-level documentation to

present your ADF as a genuine informational product. Examples of such promo landings can be

found at https://react.dev and https://nestjs.com/ (the cat picture is awesome!); they are

designed to “sell” the framework rather than present its capabilities.

Providing architecture references
The description focuses on detailed software system models built on top of your ADF.

For architects and technical leads evaluating the framework, providing architectural references

that show how real-world applications are structured using the ADF is crucial. These references

help teams understand best practices and guide them in implementing the framework correctly.

This type of documentation is frequently overlooked, and its importance is underestimated.

Key elements to include in architecture documentation include the following:

•	 Diagrams that illustrate system structure, core system components, and their interac-

tions, and where the ADF fits in: Use tools such as Mermaid.js, PlantUML, or diagrams.

net (formerly draw.io) to create clear visual representations of application components

and their interactions.

•	 Deployment models: Show different environments where the ADF can be deployed (e.g.,

microservices, monolithic applications, cloud-based, or on-premises).

•	 Case studies and sample implementations: Provide real–world examples or at least

sample app architecture designs of projects that effectively utilize the ADF. In the case

of an internal framework, it is worth listing all existing implementations based on your

ADF here, with links to their respective architecture design documentation.

For instance, Kubernetes documentation provides detailed architecture diagrams to explain

its core components, such as Pods, Nodes, and clusters, making it easier for engineers to grasp

its internal workings. Similarly, Spring Boot includes deployment scenarios illustrating how its

framework integrates within microservice architectures.

Adding known limitations and constraints can add tremendous value: application developers

always prefer to know such information in advance instead of discovering it during the produc-

tion system roll-out.

https://react.dev
https://nestjs.com/
diagrams.net
diagrams.net
draw.io

Chapter 7 203

For example:

•	 Concurrency model limitation (Node.js): It is part of the Node.js design philosophy that

an API should always be asynchronous, even where it doesn’t have to be. This piece of

documentation clearly explains some unwanted consequences of this approach: https://
nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick#why-

would-that-be-allowed.

•	 React’s effect: “You might not need an Effect” https://react.dev/learn/synchronizing-

with-effects#you-might-not-need-an-effect.

Excellent frameworks build trust by being transparent about their trade-offs.

Here are some best practices:

•	 Break down complex diagrams into multiple layers (e.g., high-level system architecture,

component diagrams, and data flow). Using the C4 model might be efficient here.

•	 If relevant, offer multiple architecture variations for different use cases (e.g., serverless,

containerized, and monolith-to-microservices transition).

•	 Ensure that documentation includes trade-offs and alternative solutions when applicable.

Writing tutorial guides for ADF adoption
These are comprehensive, step-by-step onboarding guides for new users. Often, the first infor-

mation source is for application developers who want to try the ADF or build a “proof of concept.”

Tutorials are critical for onboarding new developers with step-by-step instructions. The goal is

to guide a user from installation to a fully functional implementation of the framework-based ap-

plication. Tutorials are essential for lowering the learning curve and accelerating adoption. These

guides should take a progressive learning approach, from basic usage to advanced capabilities.

A well-structured tutorial should include the following:

•	 Introduction: What the tutorial covers and what knowledge is expected beforehand.

•	 Setup and prerequisites: Instructions for installing dependencies, configuring environ-

ments, and getting started.

•	 Building a basic application: A small but meaningful example that demonstrates core

ADF functionalities. Ideally, it should also hint at the ideal application type your ADF is

aimed at structuring.

https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick#why-would-that-be-allowed
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick#why-would-that-be-allowed
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick#why-would-that-be-allowed
https://react.dev/learn/synchronizing-with-effects#you-might-not-need-an-effect
https://react.dev/learn/synchronizing-with-effects#you-might-not-need-an-effect

Documenting and Releasing a Framework204

•	 Exploring key features: Progressive learning that introduces additional concepts in a

logical sequence.

•	 Troubleshooting and next steps: Common issues, debugging techniques, and where to

go from here.

For example, Flask’s Quickstart tutorial walks new users through building a simple web app

step by step and demonstrates key features such as routing, templates, and database integration.

Similarly, Vue.js provides interactive tutorials that allow users to experiment with code snippets

directly in the browser.

For frameworks that involve a significant user interface component, creating and maintaining

visual tutorials can be labor-intensive. A new generation of tooling is available to address this

challenge. Tools such as Guideflow, Scribe, Tango, Guidde, and Dubble can automate and sig-

nificantly simplify the task of keeping visual documentation (especially screenshots and click-

throughs) synchronized with your evolving software.

These tools typically function by recording a user’s interaction with a web application. Each click,

input, or navigation step is automatically documented with a corresponding screenshot and tex-

tual instruction. This process largely eliminates the need for manual image capture, annotation,

and formatting, offering several advantages:

•	 Create: The primary benefit is the rapid conversion of a manual process into a visually

structured walkthrough, saving considerable time.

•	 Update: Instead of recreating an entire guide when a UI element changes, you can often

rerecord only the affected section. Some tools even offer smart update detection, notifying

you when a UI element appears to have changed so you can proactively recapture that step.

•	 Publish: The output from these tools can typically be embedded directly into documen-

tation platforms such as Confluence, Notion, and GitHub, or exported to Markdown for

use in custom documentation sites.

It is important to recognize that these tools are reactive, not fully autonomous. They do not pro-

actively monitor your application for UI changes. The documentation author must still initiate a

recapture or visually validate that the guides remain accurate after a new software release.

Hint: There are new generations of tooling designed to help with this kind of docu-

mentation. Take a look at https://www.guideflow.com/.

https://www.guideflow.com/

Chapter 7 205

For frameworks with a rapidly changing UI, the following best practices are recommended:

•	 Version your guides. Align your documentation versions with your product releases (e.g.,

have distinct guides for v1.3.2 and v1.4.0 of your framework).

•	 Mark outdated content. If a guide becomes partially outdated, clearly mark the affected

steps with a warning until they can be re-recorded and updated.

•	 Ensure that each step builds upon the previous one to avoid overwhelming new users.

•	 Use screenshots and sample outputs to confirm the expected results.

•	 Include troubleshooting tips at each step.

•	 Encourage contributions by allowing users to submit feedback and improvements.

•	 Where possible, provide copy-paste-ready code snippets (as the default way to provide

guidance) and interactive sandboxes (as an advanced method more applicable to high-ma-

turity frameworks or platforms).

How-to guides for specific scenarios
How-to guides are step-by-step solutions for advanced usage, integrations, migrations, and

edge cases.

Unlike tutorials, which focus on general onboarding, how-to guides address specific, real-world

tasks that developers commonly encounter. These guides should be short, task-focused, and

solution-oriented, allowing application developers to find and apply relevant information quickly.

Examples of useful how-to guides include the following:

•	 Handling authentication and authorization: Covering integrations with specific identity

providers, including advanced tasks such as enabling single sign-on (SSO) or multi-factor

authentication (MFA)

•	 Extending the ADF with plugins: Showing how to customize or enhance the framework’s

capabilities most efficiently

•	 Migrating from another framework to your ADF: Providing necessary steps for converting

the code base and importing the framework configuration

•	 Deploying and scaling applications built with the ADF: Offering practical advice for

production readiness, including highly available configuration, request routing, and se-

cure framework secrets and keys

For example, Django’s documentation includes dedicated guides for deployment, database mi-

grations, and testing, ensuring that users can easily access relevant knowledge when needed.

Documenting and Releasing a Framework206

Here are some best practices:

•	 Format guides as a list of repeatable steps with clear inputs and expected outcomes. They

do not necessarily need to be visually rich and detailed like tutorials, because we assume

the application developer is already familiar with basic ADF functions.

•	 Link to related documentation where necessary (e.g., API references and architecture

reference).

•	 Include expected outcomes and validation checks.

Generating and maintaining reference documentation
Reference documentation provides detailed technical specifications for the ADF’s components,

including APIs, configuration options, and internal mechanisms. Unlike tutorials and how-to

guides, reference documentation is often generated automatically from source code to ensure

accuracy and consistency.

Based on the tools discussed earlier, consider the following:

•	 Select the proper documentation tooling: Based on the programming language and

framework needs, choose tools such as Sphinx (Python), YARD (Ruby), Javadoc (Java),

or Swagger/OpenAPI (REST APIs).

•	 Ensure the code is adequately commented: Use structured docstrings that documenta-

tion generators can process into readable formats. Hint: you can either generate docstrings

with a coding copilot or an AI-powered IDE, or vice versa, generate code based on a proper

function’s description. Here is an example:

def add_user(name: str, email: str) -> bool:

 """

 Adds a new user to the system.

 Args:

 name (str): The full name of the user.

 email (str): The user's email address.

 Returns:

 bool: True if the user was added successfully, otherwise
False.

 Raises:

 ValueError: If the email is invalid.

 """

 # Function implementation here

Chapter 7 207

•	 Automate documentation updates with CI/CD pipelines: Configure workflows in GitHub

Actions, GitLab CI/CD, or Azure DevOps to regenerate and publish documentation when-

ever changes are pushed.

For example, FastAPI automatically generates interactive API documentation using Swagger UI

and Redoc, ensuring that users always have up-to-date reference material without extra effort.

Here are some best practices:

•	 Use a consistent docstring style (Google-style, NumPy-style, or Javadoc format).

•	 Enable search functionality in generated documentation to improve usability.

•	 Set up automated daily or per-commit builds to keep API documentation synchronized

with the latest code changes.

•	 Store generated documentation alongside versioned releases for historical reference.

Please note that this advice is mostly relevant to the reference documentation, as we

might not want to store lots of duplicated user guides, tutorials, and other artifacts that

are not required to be synchronously updated each time we increment a version.

Ongoing maintenance and documentation strategy
Documentation is a living asset and must evolve alongside the ADF. The best way to ensure

long-term effectiveness is to integrate documentation into the development cycle rather than

treating it as an afterthought.

Key strategies for ongoing maintenance include the following:

•	 Make documentation updates part of the release process. Even if some of your documents

are not autogenerated ones, use a release checklist to quickly review your documentation

and ensure it is still relevant.

•	 Track documentation issues and improvements using GitHub/GitLab issues or Jira.

•	 Encourage community contributions by making documentation open source.

•	 Analyze user engagement to identify gaps in existing documentation.

•	 Monitor analytics to see which documentation pages are most used or need improvement.

•	 Host periodic “documentation sprints” to refine and clarify complex topics.

By treating documentation as a first-class citizen in software development, ADF developers can

create a sustainable, developer-friendly experience that promotes adoption and long-term success.

Documenting and Releasing a Framework208

An ADF can provide a seamless, intuitive, and productive developer experience by combining

high-level conceptual documents, detailed architecture references, practical guides, and auto-

mated API documentation. To summarize the chapter content, please see the following diagram,

which incorporates tools and artifacts in a single model:

Figure 7.4: Documentation tools and artifacts

By leveraging these tools and platforms, teams can establish a robust workflow for generating,

publishing, and maintaining API documentation, ensuring that it remains accessible, up-to-date,

and aligned with the framework’s evolution.

Hint: You can use the “Step-by-step guide” section as an extended prompt for your

favorite LLM, copilot, or AI agent that has access to your code base to generate the

first draft of your documents.

Chapter 7 209

As an inspirational example, we built a production-level quality custom integration framework

documentation website in two hours with Cursor (https://cursor.com, an AI-powered IDE) and

Fumadocs (https://fumadocs.vercel.app/, a documentation framework) on top of the Vercel

platform. The framework is the “PandaConnect” prototype, hosted at https://pandaconnect-

iota.vercel.app/.

Developing and optimizing API documentation for
clarity and usability
Although we described general documentation best practices in the previous section, the API

documentation is worth additional refinement.

To fully understand the importance of API documentation in the context of an ADF, we must

first clarify how APIs relate specifically to an ADF. Traditionally, API documentation refers to

comprehensive references for a fixed set of endpoints that frameworks directly expose, such as

RESTful routes, RPC calls, or library methods. However, when we discuss APIs within the ADF

domain, we refer to something notably different.

Typically, an ADF itself does not provide static, built-in APIs. Instead, its core value lies in the

infrastructure, tooling, and patterns it provides, empowering application developers to define,

implement, and manage their own domain-specific APIs. In other words, the APIs produced by an

ADF are an emergent property shaped by how developers choose to implement their applications

within the provided framework.

This critical distinction gives rise to two distinct documentation needs:

•	 Clearly documented methods and guidelines explaining how application developers can

define and implement their own APIs within the ADF’s context

•	 Well-defined interfaces, tooling, and recommended practices enabling application devel-

opers to build comprehensive documentation for the APIs they create

Let’s explore each of these documentation areas in more detail.

Documenting how to define and implement APIs
The primary goal of an ADF is to facilitate the creation of application-specific logic, enabling

developers to expose domain objects, controllers, or services as API endpoints. Therefore, doc-

umentation provided by ADF authors should carefully illustrate how to define these endpoints

within the constraints and patterns of the framework.

https://cursor.com
https://fumadocs.vercel.app/
https://pandaconnect-iota.vercel.app/
https://pandaconnect-iota.vercel.app/

Documenting and Releasing a Framework210

Why does this matter? Without clear, structured guidance, application developers risk implement-

ing inconsistent or inefficient endpoints, leading to brittle interfaces and unintended technical

debt. Clear documentation mitigates these risks by providing developers with reliable instructions,

recommended patterns, and practical examples.

For example, suppose the ADF uses a web framework resembling Django. In that case, the frame-

work’s documentation should explicitly describe how developers define views or controllers,

how these are linked to routes, and how the corresponding URL routing definitions are created

and managed. Similar guidelines apply across different types of frameworks, whether frontend,

backend, or hybrid.

Supporting application developers in creating their own API
documentation
After application developers successfully implement their APIs using the ADF, the next challenge

arises: producing clear, maintainable documentation of these domain-specific endpoints. If con-

sumers of these APIs – be they internal teams or external partners – cannot easily understand how

to use them, the APIs themselves will quickly become ineffective, no matter how well engineered

they might be.

To help developers succeed in this critical step, ADF authors should provide robust guidance and

tooling recommendations that simplify API documentation. Consider the following approaches.

Schema-driven versus code-first approach
Application developers often document APIs using one of two general approaches: schema-driven

or code-first.

Schema-driven approaches leverage a domain-specific language (DSL) or a configuration format

(such as YAML or JSON) to define APIs explicitly. From these definitions, the ADF can automati-

cally generate boilerplate code, API stubs, or interactive documentation. Tools such as OpenAPI

or AsyncAPI specifications are popular for such approaches.

Code-first approaches, on the other hand, allow application developers to define APIs directly

through source code annotations, decorators, or docstrings within the project’s programming

language (for instance, Python, TypeScript, or Java). The ADF can then parse these annotations

to generate API documentation automatically.

Chapter 7 211

Both approaches are viable, and the choice depends on the ADF’s architectural context and de-

veloper preferences. However, we would not recommend trying to cover both options to avoid

confusion – help your users decrease cognitive load by narrowing down the number of decisions

they have to make when integrating your framework!

Integration with common documentation tools
The ADF documentation should encourage integration with widely used API documentation

generation tools. Some effective options include the following:

•	 For RESTful APIs: Recommend OpenAPI (Swagger UI, Redoc) or RAML, offering built-in

tools or adapters within the ADF for automatic schema generation.

•	 For internal or library APIs: Recommend documentation generators such as Sphinx for

Python projects or TSDoc for JavaScript/TypeScript-based ADFs, with configuration sam-

ples and scripts provided by the ADF.

•	 For command-line interfaces: Include examples of integrating CLI documentation tool-

ing such as Click or docopt, showing how application developers can create clear, helpful

documentation embedded directly within their tools.

Enhancing developer productivity through integrated tooling
Please note that the following recommendations are mostly relevant to a highly mature frame-

work. Rather than integrating API docs tooling, you can make many more critical improvements

in a framework of one, two, or three maturity levels.

Beyond simply recommending external tools, consider how your ADF can actively support ap-

plication developers by embedding or integrating a convenient API documentation tool directly

within the framework itself. The following practices significantly enhance developer productivity

and experience:

•	 Providing built-in scripts or commands that automatically generate or update API doc-

umentation during builds or deployments

•	 Offering documentation generation as part of the CI/CD pipeline, so every API change

immediately triggers documentation updates

Interactive documentation features are also invaluable. Tools such as interactive playgrounds,

request simulators, and auto-generated cURL commands or code snippets improve usability and

reduce the onboarding time required for API consumers.

Documenting and Releasing a Framework212

Several successful frameworks exemplify these principles:

•	 FastAPI: This modern Python framework automatically generates interactive API docu-

mentation from your code. By using Python type hints, FastAPI creates a live, interactive

Swagger UI and Redoc interface where developers can not only read about endpoints

but also test them directly in the browser. This is a core feature, not an add-on, making

documentation an inseparable part of the development process. You can learn more in the

FastAPI documentation: https://fastapi.tiangolo.com/features/#automatic-docs.

•	 Django REST Framework (DRF): DRF includes BrowsableAPIRenderer, which creates a

user-friendly HTML representation of your API. This interface is not static; it allows de-

velopers to browse API resources and even submit POST, PUT, or DELETE requests through

web forms, providing an invaluable tool for exploring and debugging the API without

needing a separate client. See the feature on the DRF Browsable API at this link: https://

www.django-rest-framework.org/topics/browsable-api/.

•	 Ruby on Rails: Rails provides several built-in commands that enhance productivity by

self-documenting the application. The rails routes command, for example, inspects

the application’s routing configuration and outputs a complete list of all available URL

endpoints, their corresponding controller actions, and HTTP methods. This serves as

instant, accurate documentation for the application’s surface area.

•	 NestJS (with Swagger plugin): This Node.js framework offers a dedicated @nestjs/

swagger module that deeply integrates with the framework’s architecture. By adding

decorators to controllers and models, developers can automatically generate a compre-

hensive OpenAPI (Swagger) specification and a rich interactive UI. This demonstrates how

a framework can provide a seamless, officially supported pathway for creating powerful

documentation with minimal effort. Explore the integration in the NestJS OpenAPI doc-

umentation: https://docs.nestjs.com/openapi/introduction.

Summarizing the documentation strategy for ADF-enabled APIs
In summary, because APIs generated from an ADF arise from specific application contexts rather

than from the framework itself, ADF authors face two documentation responsibilities:

•	 Provide detailed, structured instructions for developers on how to create API endpoints

within the framework’s patterns and capabilities.

•	 Recommend and support tools and strategies that empower application developers to

generate and maintain their own high-quality API documentation effectively. For a pro-

prietary “corporate source” framework, it might be feasible to integrate standard internal

documentation tooling to simplify application developers’ lives even more.

https://fastapi.tiangolo.com/features/#automatic-docs
 https://www.django-rest-framework.org/topics/browsable-api/
 https://www.django-rest-framework.org/topics/browsable-api/
 https://docs.nestjs.com/openapi/introduction

Chapter 7 213

By clearly distinguishing between these two documentation goals and systematically addressing

each, you ensure that developers using your ADF consistently deliver robust, maintainable, and

understandable APIs, enhancing both their productivity and the value of your framework.

Implementing effective versioning and release
strategies
A structured approach to versioning and release management is essential for the long-term success

and maintainability of an ADF. Clearly defined strategies ensure releases are predictable, stable,

and easy to adopt, reducing user friction and building stakeholder trust.

This section explores the lifecycle of an ADF release, essential practices such as semantic version-

ing, deprecation policies, and long-term support, and demonstrates how automation streamlines

the release process.

Build and deployment process
Before effective release management can occur, a reliable build and deployment process must be

established. This ensures consistency, repeatability, and quality control from initial development

to final distribution.

Repository and branching strategy
The build process begins within the source code repository, guided by structured branching

strategies such as Git Flow, feature branching, or trunk-based development. These strategies

maintain clarity and streamline team collaboration. Creating snapshots or forks supports iso-

lated development environments, enabling teams to experiment without disrupting the primary

codebase. After thorough validation and testing, these forks can merge back into the main branch,

ensuring minimal disruption.

Corporate ADF specifics here are that forks and snapshots might be restricted to avoid high vari-

ability of supported versions and centralize ADF ownership. For an open source ADF, usually,

it is the responsibility of application developers to decide how to consume the ADF: as a fork,

snapshot, or package.

Documenting and Releasing a Framework214

Build automation
Automating the build process is critical to ensure reliability and efficiency. Here are the key com-

ponents:

•	 Testing and validation: Integrating tests into build automation helps detect issues early,

long before problematic builds reach the production environment. Unit tests are simple,

function-bound tests that are easy to write and execute. Integration tests validate inter-

actions between components, while system-level tests ensure comprehensive coverage.

Modern AI-powered IDEs and copilots significantly streamline creating and maintaining

test suites. Still, manual review of AI-generated test code remains essential due to the

technology’s novelty and potential inaccuracies.

•	 Linting and static analysis: Early identification of coding issues saves significant time

and effort in later stages. Automated linting tools enforce coding standards, consistency,

and best practices, helping prevent common coding errors and improving readability

and maintainability.

•	 Matrix builds: Ensuring compatibility across various environments, dependencies, and

technology stacks is crucial for broad adoption. Matrix builds systematically test the

ADF across multiple configurations, identifying compatibility issues early and allowing

for proactive resolution.

•	 Artifact generation: Automating artifact generation ensures reproducible and reliable

builds. This process packages binaries, compressed archives, or containers ready for dis-

tribution, ensuring consistent deployments and reducing manual errors.

Specialized components, such as machine learning or agent-based functionalities, may require

tailored build steps to handle unique dependencies, configurations, and deployment require-

ments properly.

Release and artifact distribution
Following successful builds, artifacts are finalized for release with semantic versioning clearly

indicating the version and related metadata. These artifacts are then published through reliable,

centralized distribution channels:

•	 Public registries such as PyPI, Maven, or GitHub Packages

•	 Internal or enterprise-specific artifact repositories such as Amazon S3 or Artifactory

Centralized artifact distribution ensures that the artifacts are easily accessible, secure, and con-

sistent across the user ecosystem.

Chapter 7 215

Release lifecycle phases
Every successful ADF moves through distinct lifecycle phases, starting with initial exploratory

versions, progressing through stable, production-ready releases, and eventually reaching the

long-term support stage.

Figure 7.5: Release management flow

•	 Initial versions (v0): Early releases validate foundational decisions and gather critical

user feedback:

•	 Alpha releases: These experimental versions test core functionalities with a limited user

group. Think of it as a proof of concept (PoC) of the framework you want to test by a

trusted circle of early users. So, the alpha release is another way to have crowdsource

testing for free. Usually, ADF developers do not commit to any support for such builds.

•	 Beta releases: These versions are more stable than alpha, allowing for broader testing of

integrations and use cases. ADF developers usually provide limited support for this version.

•	 Release candidates (RCs): These are nearly final versions intended for extensive validation

before the official stable release. This version is optional; some software products jump

straight to stable/major versions after beta. Ideally, the ADF could be open for direct con-

tribution to its alpha (and probably beta) users to simplify and speed up the feedback loop.

Documenting and Releasing a Framework216

•	 Stable versions (v1, v2, …): Stable releases represent clearly documented milestones with

defined migration paths:

•	 Major releases: These introduce significant enhancements, new features, or breaking

changes. Usually, it requires migration or manual work to upgrade, so it is better not to

release it too often.

•	 Minor versions: These offer incremental updates and improvements without significant

disruptions. It is important to keep minor versions backward compatible to streamline

the application upgrade process.

•	 Long-term support (LTS): This provides ongoing security updates and critical fixes for

enterprise stability, but no functional changes are made here.

Complementary release practices
Implement additional practices to enhance the clarity, predictability, and reliability of the release

process:

•	 Change logs: Document changes, enhancements, and bug fixes to maintain transparen-

cy and accountability. Release Notes is a commonly used format to keep stakeholders

informed.

•	 Tracking: Integrating the task tracker and/or issue tracker with the CI documentation

step can achieve some automation.

•	 Deprecation strategies: Clearly communicate feature retirements, providing warnings

and migration guides to facilitate smooth transitions.

•	 N-2 support policy (or any alternative support policy that goes as deep back in legacy

versions as you are comfortable with): Offer support for the current and two previous

major releases, giving users flexibility and time for upgrades.

Versioning and metadata
Adopt semantic versioning to communicate release changes intuitively, categorizing releases

clearly as major, minor, or patch.

 Simplified release management

Avoid unnecessary complexity, such as shadow releases or feature flags, unless ex-

plicitly required, maintaining simplicity and ease of use. It is usually feasible for an

ADF to delegate advanced roll-out activities to application developers, so they are

responsible for feature flags and shadowing on their side.

Chapter 7 217

When paired with comprehensive documentation, intuitive navigation, and metadata-rich release

notes, semantic versioning significantly enhances user accessibility and adoption.

Navigating issue tracking and collaboration platforms
Effective release management doesn’t stop at versioning or artifact distribution. An equally im-

portant practice is to establish a reliable mechanism for gathering user feedback and tracking

issues throughout the lifecycle of your ADF.

Issue tracking platforms are more than just bug-reporting tools. They serve as vital communica-

tion channels between framework developers and their users, enabling the exchange of critical

insights, enhancement requests, and user experience improvements. Such platforms significantly

reduce friction in feedback loops, empowering users to become active participants in the evolu-

tion of your framework.

Moreover, a transparent issue-tracking approach can transform user perception by clearly demon-

strating your priorities, roadmap items, and commitment to addressing feedback. Publicly track-

ing issues provides transparency around decisions, helping to set correct expectations about

feature timelines, highlighting upcoming improvements, and clarifying the rationale behind

prioritization choices.

When selecting an issue tracking solution, it’s tempting to gravitate toward feature-rich, complex

systems that promise extensive analytics or intricate workflows. However, simplicity should be

the guiding principle, especially in the early stages of your ADF lifecycle. Prioritize tools that

minimize friction, not just for your team but also for your users. The chosen platform should offer

an intuitive, straightforward process for issue submission, commenting, and following progress,

without requiring elaborate onboarding or significant learning effort.

Consider the following popular and accessible platforms based on your context:

•	 For open source or community-driven frameworks, platforms such as GitHub Issues or

GitLab Issue Boards are generally preferred. They seamlessly integrate with the code re-

positories, offer intuitive interfaces, and facilitate transparent community collaboration.

•	 For enterprise or internal frameworks, consider simple yet versatile tools such as Jira,

Azure DevOps, or YouTrack. These platforms balance simplicity with enterprise-grade

features such as integration with internal workflows, security considerations, and con-

trolled user access.

Documenting and Releasing a Framework218

Beyond selecting the platform, it is critical to establish clear guidelines on how users should

submit issues. Provide concise templates for bug reports, feature requests, and general inquiries

to ensure consistent and actionable feedback. Regularly triage and review reported issues, openly

communicate planned resolutions, and update issue statuses promptly. Consider linking your

issue tracker directly with automated release notes or documentation pipelines, providing im-

mediate visibility into addressed items upon each new release.

Remember, issue tracking platforms are not mere defect repositories – they are collaborative

communication hubs that bridge the gap between framework developers and users. By careful-

ly choosing, clearly structuring, and consistently managing these platforms, you significantly

enhance the transparency, trust, and ultimately the long-term success of your ADF initiative.

Summary
As you’ve seen throughout this chapter, documenting and effectively releasing your ADF goes

beyond simple instructions – it’s foundational to your framework’s adoption, usability, and

enduring success. Exceptional documentation is a strategic asset that empowers developers,

streamlines collaboration, enhances maintainability, and, ultimately, shapes your framework’s

impact in the software engineering community.

To elevate your ADF’s documentation from merely informational to genuinely transformative,

start by embracing interactive documentation tools. Tools such as Swagger/OpenAPI, Postman,

or Redoc enable developers not only to read but also to actively engage with your APIs. Interactive

experiences allow your users to directly explore endpoints, visualize request-response flows, and

quickly grasp how your framework behaves in real-world scenarios, significantly reducing their

onboarding time and effort.

Further, amplify your documentation effectiveness by automating documentation generation

directly from your code base. Adopting tools such as Javadoc, Doxygen, or Sphinx ensures syn-

chronization between your documentation and code, dramatically reducing maintenance effort,

preventing discrepancies, and empowering your engineering teams to focus more deeply on

building robust features rather than updating manuals.

But don’t stop there – ensure your documentation is easily navigable and intuitively organized.

Employ visual aids such as flowcharts, diagrams, video walk-throughs, and interactive architec-

tural views to simplify complexity and accelerate comprehension. Clear visuals help succinctly

communicate intricate processes and concepts, improving user experience and boosting the

developer’s productivity when integrating your ADF into their projects.

Chapter 7 219

Finally, consider your documentation a continuous journey rather than a one-time effort. Imple-

ment robust feedback loops to capture user insights and pain points regularly. Actively refining

your documentation based on this feedback ensures it remains relevant, effective, and aligned

with evolving user needs and technological advancements.

Your next step is clear: take immediate action by integrating interactive documentation tools into

your ADF workflow, automating documentation processes, enhancing visual communication,

and proactively seeking continuous improvement. By embracing these practices, you’ll increase

the clarity and adoption of your framework and position your ADF as a leader in developer ex-

perience and productivity.

After taking care of the documentation and release management topics, we can safely focus on

evolving the framework without any significant blockers to ADF adoption and successful use –

check the next chapter!

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search for

this book by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready before you start.

http://packtpub.com/unlock

Part 3
Evolving a Framework

Sustaining relevance through continuous
improvement
A great framework is not a fixed artifact – it’s a living system. This part of the book focuses on

how to evolve an ADF beyond its initial implementation. You’ll learn how to embed continuous

improvement into the lifecycle of your framework, strengthen its adaptability to new contexts,

and ensure its long-term relevance and usability.

We explore the essential mindset and practices that enable ADFs to survive and thrive in re-

al-world conditions, including iterating on developer experience, refining control flow, expanding

extensibility, and embracing continuous delivery. Along the way, we reflect on what it means to

treat a framework not as a finished product, but as an open-ended conversation with your users.

This part has the following chapter:

•	 Chapter 8, Evolving a Framework

8
Evolving a Framework

Congratulations, it seems that you are on track with building your own Application Development

Framework (ADF), configuring pipelines, and preparing extensive documentation and developer

guidance. What’s next?

This chapter shares more ideas, tips, practices, and opportunities for you to drive your ADF evo-

lution and bring more value and joy to your users by developing their applications.

By the end of this chapter, you will have the skills and knowledge to do the following:

•	 Embark on an ADF initiative

•	 Guide the ADF initiative: a product way

•	 Hardening security along the ADF evolution path

•	 Finding inspiration from creators

•	 AI-native development with an ADF

With these capabilities, your ADF will not only deliver on its promises but also inspire confidence

and trust among its users and stakeholders.

Embarking on an ADF initiative
Sometimes, starting to build your own ADF is easy (especially if you make it from scratch): you

just open your favorite IDE and start typing your code. You can even create the initial ADF skeleton

by practicing “vibe coding,” where most of the work is done by an LLM agent.

Evolving a Framework224

But more often, you are not thinking about the ADF specifically: most ADF creators came up

with the idea of building the ADF while focusing on ongoing software development work. This

evolutionary approach, born from tackling real-world project challenges, often leads to the most

practical and impactful frameworks. Think of how Django emerged from the deadlines of a news

website or how ReactJS was initially built to simplify Facebook’s complex UIs.

Building an ADF isn’t just about code; it’s about recognizing a need, collaborating effectively, and

strategically building a solution that simplifies life for other developers. If you sense an oppor-

tunity to streamline development within your organization or for a wider community, here’s a

look at the crucial steps to begin your ADF journey.

Uncovering the opportunity
As mentioned, ADFs often sprout from existing development efforts. Keep an eye out for patterns

and repetitions in your team’s workflow. Ask yourself the following:

•	 Is there a specific “method of work” that is repeatable, complex, or error-prone across

multiple projects or features? Examples could be setting up new microservices, imple-

menting specific UI patterns, or integrating with common internal services.

•	 Are developers spending significant time on boilerplate code or technical scaffolding

instead of core business logic?

•	 Is there a desire to enforce specific architectural patterns or best practices consistently?

Identifying these pain points is not just a task; it’s an opportunity to define the core problem

your ADF will solve.

This might be the first step towards articulating the ADF value proposition. Sometimes, the op-

portunity lies in decoupling parts of a larger system to improve team autonomy or testability, as

seen in the UX Extensions framework example. By identifying and addressing these pain points,

you are taking proactive steps to improve the development process.

Now we have AI-native IDEs and AI-coding agents, so there might be a temptation to

cover all the abovementioned pain points with appropriate prompts. Please be careful

here – the results can look identical (tests are green, and the application works as ex-

pected), but in a code base, you will most likely have lots of unnecessary duplications,

or even worse – multiple ways of implementing the same flow in different places.

Accumulating such issues can make your AI toolset require more context tokens over

time, and can significantly increase the risk of future prompt misinterpretation.

Chapter 8 225

Collaborating: finding your team
Building a successful ADF is rarely a solo endeavor. It requires collaboration among various stake-

holders within an engineering organization. Identify individuals who share the vision or feel the

pain points that the ADF aims to solve. This might include the following people:

•	 Fellow developers: Those who will directly use or contribute to the framework. Their

input on usability and features is invaluable.

•	 Architects: They ensure the framework aligns with broader technical strategies and main-

tainability goals.

•	 Engineering leaders (team leads, directors, CTOs): Their support is crucial for securing

resources and promoting adoption.

•	 Technical Product Managers (TPMs): If available, they can help manage stakeholder

expectations and align the ADF with strategic goals.

Building a coalition early on fosters shared ownership and increases the chances of the framework

being adopted and maintained.

Identifying “quick wins”
Starting an ADF doesn’t mean building a comprehensive, Level 5 ecosystem overnight. Begin

by focusing on the most critical pain point and delivering a Minimal Viable Framework (MVF)

– perhaps corresponding to Level 1 (unextracted) or Level 2 (MVF) of the ADF maturity model.

•	 Focus on core value: Address the most pressing issue first to demonstrate immediate value.

•	 Extract incrementally: Follow an evolutionary approach. Refactor and extract components

from an existing project rather than designing everything up front. This minimizes risk

and ensures the framework is grounded in real needs.

•	 Target early adopters: Work closely with a specific team or project to pilot the initial

version and gather feedback.

Early adopters note

It might not be a good idea to search for them in teams that are responsible

for maintaining critical functionality, because quality/performance is too

important for them. They are usually sensitive to backward compatibility,

which helps them to keep their components stable. Early versions of ADF can

have their API contracts changing multiple times, so early adopters should

be ready to change their code at any time.

Evolving a Framework226

These “quick wins” build momentum, demonstrate the framework’s potential, and make it easier

to secure further support.

Get support to secure resources
Building and maintaining even a minimal ADF requires time and resources. Securing buy-in,

especially from engineering leadership, is critical:

•	 Find an executive sponsor: Company priorities can change over time, and an ADF is a

long-term investment. Executive sponsors should protect the investment until the ADF

can start delivering value and become a real asset to the organization.

•	 Articulate the value: Clearly explain the problem the ADF solves and the benefits it offers

(e.g., reduced complexity, increased productivity, better architectural alignment).

•	 Estimate ROI: If possible, quantify the potential return on investment. Compare the effort

required before the ADF to the projected effort after adoption, considering the number

of times the framework will likely be reused. Use models such as the “method of work”

breakdown to refine estimates. Remember to factor in adoption costs, which are often

underestimated. Even an ROI below 1 might be justified if the strategic benefits (such as

decoupling a monolith) are significant.

•	 Present a roadmap: Outline the development plan, starting with quick wins and showing

potential evolution based on the ADF maturity model.

Gaining explicit support ensures the ADF initiative receives the necessary time, budget, and

personnel.

Making it transparent and useful for others
For an ADF to be successful, it needs to be adopted. Transparency and usability are key drivers

of adoption:

•	 Prioritize documentation: From the outset, invest in clear, comprehensive documen-

tation. This includes concept overviews, how-to guides, tutorials, and API references. A

contribution guide can be crucial if you want to go for “corporate source” or even open

source principles. Leverage tools to automate documentation generation where possible.

Good documentation empowers developers to use the framework independently.

My personal advice is to be pessimistic at this point to showcase the worst-case

scenario. The nature of software development projects is rarely bright, and the ADF

path is even more complex and full of risks.

Chapter 8 227

•	 Structure code intuitively: Organize the framework’s source code logically, treating it as

a user interface for developers. Use clear naming conventions and modular design. Ensure

the code is accessible, even if it’s proprietary.

•	 Embrace OSS principles: Even for internal frameworks, adopting practices from open

source software development can be beneficial. This includes encouraging contributions,

establishing clear feedback channels (such as issue trackers), and fostering a sense of

community ownership. This improves quality, innovation, and talent attraction.

•	 Manage releases: Implement clear versioning (such as semantic versioning) and release

management practices to make updates predictable and stable. Provide changelogs and

release notes.

Making the framework easy to find, understand, use, and contribute to is essential for its long-

term survival and impact.

Enjoying the process
Finally, remember that building frameworks can be a deeply rewarding experience. You’re creating

tools that amplify the efforts of your fellow developers, solving complex problems, and contrib-

uting to the engineering culture of your organization or community. Embrace the challenges,

celebrate the successes, and enjoy the journey of building something truly useful.

Guiding the ADF initiative: a product way
Launching even an MVF is just the beginning. To ensure your ADF delivers sustained value, avoids

becoming shelfware, and justifies ongoing investment, it’s essential to shift from a purely tech-

nical project mindset to treating the ADF as an internal product. This means actively managing

its lifecycle, engaging with its users (the developers), and continuously measuring its impact.

Adopting the product mindset for your ADF
Why treat an internal tool like a product? Because, like any product, your ADF has users (develop-

ers), stakeholders (engineering leadership, architects), and a value proposition (improving SDLC

efficiency, enforcing standards, reducing complexity). Applying product management principles

helps ensure the ADF remains aligned with user needs and organizational goals long after its

initial release. Key aspects include the following.

Evolving a Framework228

Establishing feedback loops
Your developers are your customers. Create clear channels for them to provide feedback, report

bugs, and suggest improvements. This could involve dedicated Slack channels, regular developer

surveys, “office hours,” or leveraging the same issue tracking systems used for production software

(as discussed in Chapter 7). Actively soliciting and responding to this feedback makes developers

feel heard and invested in the framework’s success.

Prioritization and iteration
With limited resources, you can’t build everything. Apply prioritization techniques to the ADF

backlog. Balance fixing bugs, improving documentation, adding new features requested by users,

and paying down technical debt within the framework itself. Iterate on the framework, releasing

updates regularly (following the release management practices in Chapter 7) rather than aiming

for large, infrequent “big bang” releases.

Roadmapping beyond the initial build
Just like any software product, an ADF needs a roadmap. This isn’t necessarily a complex, multi-

year plan, but rather a vision for its evolution. What capabilities might be added as it moves up

the maturity model (Chapter 3)? What technical debt needs addressing? What integrations are

planned? The roadmap should be informed by both strategic engineering goals and, crucially,

feedback from the developers using the framework.

Measuring success and proving value
Securing initial resources often involves estimating ROI (as discussed in Chapter 2). However, after

the initial release of the framework, you need to demonstrate the ADF’s actual impact to justify

continued investment into its maintenance and evolution. Make sure your initial ADF version is

ready to provide you with the data to prove value, identify areas for improvement, and guide the

roadmap. Consider tracking the following:

Adoption metrics
How widely is the ADF being used? Track the number of projects or teams actively using it. If

possible, also track projects or teams that don’t use your ADF. An ideal adoption metric is the

percentage or ratio of subsystems/components that adopted the ADF versus the total number of

subsystems/components that could do so, potentially.

Chapter 8 229

Although my personal preference is to unblock new users rather than please existing users, your

professional context can dictate the opposite principle.

To get a complete picture of the user journey, we should ask about the challenges teams face

during adoption. Furthermore, a true product-focused approach requires us to interview teams

that evaluated the framework but ultimately decided against it. This is the most direct way to

understand and reduce user churn.

Developer Experience (DevEx) metrics
Gather qualitative feedback through surveys or interviews. Ask developers about ease of use, qual-

ity of documentation, and how the ADF impacts their workflow. A decrease in framework-related

support questions can also indicate improved DevEx.

SDLC impact metrics
•	 Revisit ROI: Can you now measure the actual EAfter (effort required with the ADF) for the

targeted “method of work”? Compare it to the original EBefore. Did the framework deliver

the anticipated efficiency gains?

•	 Cycle time: Does the framework measurably speed up development for specific types of

features?

•	 Code quality/consistency: Do projects using the ADF demonstrate fewer bugs in specific

areas or greater adherence to architectural standards? This can be harder to quantify, but

it is often a key benefit.

•	 Contribution rate (if applicable): If you’re fostering an internal open source model, are

developers contributing back fixes, improvements, or extensions? This indicates strong

engagement.

The core principle is to prioritize feedback that removes adoption blockers over

feedback that enhances the experience for existing users. In other words, focus first

on why teams can’t use the framework, rather than on improving it for teams who

already do.

We must critically evaluate any decrease in support questions. While it can signify

success, it can also be a negative indicator of eroding developer trust, which occurs

when users stop providing feedback because they feel their previous input was ig-

nored.

Evolving a Framework230

Closing the loop: measurement informs the path
The data and feedback gathered through measurement shouldn’t just sit in a report; they must

actively inform the ADF’s product path. If adoption is low, investigate why – is it documentation,

missing features, or discoverability? If DevEx scores are poor, prioritize usability improvements.

If the ROI isn’t materializing, reassess the framework’s core approach or the types of problems

it’s trying to solve. By treating your ADF as a living product, guided by user feedback and mea-

surable impact, you ensure it remains a valuable asset that truly accelerates and improves your

organization’s software development lifecycle.

Hardening security along the ADF evolution path
Security is rarely a first-class citizen in development backlogs: for most developers, security and

compliance have the opposite meaning of “fun.”

Building an extensible software framework securely means weaving security practices into every

phase of design and development. In this section, we apply the Secure Systems Development

Lifecycle (SSDLC) to framework engineering. We’ll cover how to design framework architecture

for security, model threats early, leverage security tooling across languages, enforce secure CI/CD

and release practices, plan for incident response, govern the community, and improve the devel-

oper experience – all through practical examples from real frameworks (Django, React, Spring,

NestJS, Fastify, Gin, etc.).

Secure design and architecture
Secure-by-default framework APIs
The fundamental principle is to make the safest behavior the default. Many mature frameworks

illustrate this: for example, Django’s templating engine auto-escapes HTML output to prevent

XSS, so developers must explicitly opt out if they really need raw HTML. Similarly, React treats

all JSX text as content, not raw HTML – it escapes embedded values by default, and you must use

dangerouslySetInnerHTML for any direct HTML injection. This deliberate friction (with “dan-

gerously” in the name) nudges developers toward safety. Following this model, our framework’s

The content of this section is primarily relevant to high-maturity ADFs

It’s fine for early prototypes not to be focused on security, but starting from maturity

level two, it becomes a must.

Chapter 8 231

modules and APIs should validate and sanitize inputs by default, use safe defaults for cryptog-

raphy (e.g., secure cipher modes, random UUIDs), and ensure that any “escape hatches” (such

as running evaluation or unsafe operations) are clearly labeled and require extra steps. Secure

defaults act as guardrails so that typical framework use naturally avoids vulnerabilities.

Strict abstraction boundaries and isolation
Agent-oriented, modular frameworks often allow plugins or user-defined modules to extend function-

ality. Enforcing clear isolation between the core framework and these extensions is critical. Whenever

possible, sandbox plugins or run them with restricted privileges. For example, Envoy Proxy (a C++

service proxy) moved to a model of running extensions in a WebAssembly sandbox, so a bug in a

module won’t crash the whole process and can’t access out-of-scope memory. In our framework, we

might run user plugins in separate processes or threads with minimal privileges. If using a language

that supports it, consider a sandboxed VM: for example, a JavaScript/TypeScript plugin engine could

run in a locked-down V8 context, or a Python plugin could run with a restricted __builtins__. The

goal is that a malicious or malfunctioning extension cannot break framework isolation boundaries – it

shouldn’t directly tamper with core memory or data of other tenants. Strong isolation was highlight-

ed in an “Extension Interface Model” study: many systems (e.g., WordPress, Apache httpd modules)

historically loaded plugins in-process with full access, whereas a secure design runs extensions out-

of-process or in a managed sandbox. By applying this, an exploit in a plugin would have a limited blast

radius (e.g., crash only the plugin’s sandbox, not the whole application).

Role-based access control for components
In extensible frameworks, not every module should have equal powers. Design an internal RBAC

where different plugin types or agents are granted only the capabilities they need. For instance, if

your framework has “admin” versus “regular” plugins or core versus extension modules, enforce

that difference. You might allow certain sensitive APIs (such as changing global configuration

or accessing another user’s data) only to modules signed by the framework author or marked as

trusted. In practice, this could mean having a permission manifest for plugins (similar to Chrome

extensions, declaring what domains or features they need). A plugin that only needs to generate

reports might get a “read-only” role, whereas one that modifies state gets an “editor” role – and

the framework’s plugin loader enforces those boundaries at runtime. If a plugin tries to call a for-

bidden API, it should be blocked or result in an error unless its role allows it. This concept follows

the principle of least privilege: each component (or agent) in the system should only be able to do

what it must and no more. In languages such as Go or Java, you can implement this via interface

segregation – e.g., pass plugins a limited interface that doesn’t include dangerous methods. In a

more dynamic environment (Node.js, Python), you might inject a restricted globals/context for

Evolving a Framework232

the plugin. Role-based design limits the impact if a plugin is compromised, as seen in the Chrome

extension model, where an extension must declare permissions and cannot step outside them.

Secure runtime patterns
Beyond initial design, consider how the framework behaves at runtime under untrusted inputs

or components. Common secure runtime patterns include the following:

•	 Contract-based interfaces: Define and enforce clear contracts between the framework

and extensions. For example, if the framework calls a plugin’s processData(data) func-

tion, ensure the data is in a format the plugin expects (and validate it in the framework

before calling the plugin). Likewise, if the plugin returns a result, the framework should

verify it’s sane (not overly large, correctly typed, etc.). Many vulnerabilities occur at these

boundaries. In fact, an analysis of real-world extension bugs showed that strict validation

at the host-extension interface (and providing safe libraries for common tasks) can prevent

issues – for example, an Nginx module’s buffer overflow parsing an MP4 could have been

avoided if the core validated the input size or the plugin used a vetted parsing library. So,

build robust API contracts: specify data schemas for plugin inputs/outputs and enforce

them (using techniques such as JSON schema validation or type checks).

•	 Resource quotas and timeouts: Guard against a plugin or module that consumes excessive

resources (whether accidentally or maliciously). A classic example is a plugin entering

an infinite loop or performing heavy computation that hangs the system. For instance,

Redis allows embedding Lua scripts, which could run wild and block the single-threaded

server; to mitigate that, Redis enforces a script timeout (a default of 5 seconds) and will

stop scripts that exceed it. Our framework should similarly use timeouts for plugin op-

erations or concurrent execution limits (e.g., “no plugin may use more than 1 CPU core or

run more than X ms per call”). If an agent is supposed to run in the background, give it a

separate thread with lower priority or a circuit breaker to stop it if it misbehaves. Memory

quotas are also important – one faulty extension shouldn’t be allowed to allocate endless

memory. This might be implemented via monitoring (periodically check the memory

usage of plugin threads) or using language runtime features (such as ResourceManager

in .NET or isolating plugins in subprocesses so the OS can enforce limits).

•	 Secure sandbox execution: We touched on sandboxing – this pattern deserves emphasis

if your framework supports user-supplied code (plugins, scripting, etc.). Depending on the

language, different strategies apply. In Rust, for example, one doesn’t typically sandbox with

an interpreter (since Rust is compiled), but you can leverage Rust’s powerful capability-based

safety at compile time. Rust’s type system can limit access to resources: for instance, passing

Chapter 8 233

an object of type Dir from the cap-std crate to a plugin gives it access only to that directory,

not the whole filesystem (it cannot construct arbitrary file paths outside). This is an example

of capability-based security: the plugin is only given the capabilities (file handles, network

sockets, etc.) that it needs, and it cannot escape that because Rust doesn’t allow it to obtain

other handles without permission. In contrast, on the JVM (Java, Kotlin), historically, a

SecurityManager could sandbox code by checking permissions on sensitive operations (file

access, reflection, etc.). Although the default SecurityManager is being phased out, frame-

works can still sandbox using classloader tricks or new constructs. For example, one could

run untrusted Java code in a separate JVMTI sandbox or use technologies such as Google’s

gVisor or Kotlin’s secure sandbox libraries to restrict what it can do. A simpler approach is

to run it out-of-process (a small service) and communicate via a controlled protocol (thus

leveraging OS-level isolation). In JavaScript (Node.js or a browser), utilize Content Security

Policy (CSP) and strict mode. If your framework outputs web content or allows modules

to inject UI, you can set a CSP header to restrict script sources and forbid evaluation. Many

web frameworks (Next.js, NestJS with Helmet) encourage setting a strong CSP to mitigate

XSS. In a Node context, if using user scripts, you might use V8’s isolates or the Node vm

module to create a sandboxed context without access to the main require. The key is to treat

extension code as untrusted by default and guard it closely.

Language-specific security strategies
Embrace the unique security features of the implementation language. In Rust, prefer using its safety

guarantees (no raw pointers, borrow checker enforcing memory safety) – for instance, writing core

components in Rust can eliminate entire classes of bugs such as buffer overflows and data races.

Some frameworks (e.g., Node.js using Rust add-ons for heavy parsing) do this to leverage Rust’s

safety. Also consider Rust’s ownership as a capability model – for example, to give a plugin limited

authority, only hand it objects it should manipulate, never global singleton instances. In Go, avoid

unsafe packages and use tools such as go vet and gosec to catch common flaws (in fact, golangci-lint

includes gosec rules to inspect source for insecure code). The JVM has a robust bytecode verifier and

managed memory; use that by writing extensions in JVM languages (Java/Groovy/Kotlin) rather than

native code when possible, because the JVM can prevent certain unsafe operations. For JavaScript,

aside from CSP, use the event-driven single-threaded nature to your advantage: for example, avoid

blocking operations that could freeze the event loop (which would be a form of DoS). If the frame-

work must allow potentially blocking plugin code, push it to worker threads. Moreover, JavaScript

in browsers has CSP and sandboxed iframes – if your framework involves running user-provided UI

components (such as a widget framework), consider rendering them in sandboxed iframes with a

strict CSP, so they can’t access the parent context or make unauthorized network requests.

Evolving a Framework234

By designing the framework’s architecture with these secure-by-design principles – safe defaults,

strong isolation, least privilege roles, sandboxing, and language-native defenses – you establish

a solid foundation.

Incident response and vulnerability disclosure
No matter how much we plan and secure, vulnerabilities can surface. What differentiates a truly

security-conscious project is how we handle security issues and incidents when they occur. Our

framework, being open source (assumed from the context), should have a clear process for re-

ceiving vulnerability reports, responding, and disclosing to users in a responsible way.

Private reporting channels: We must provide an obvious and secure way for researchers or users to

report vulnerabilities privately. Public issue trackers are not suitable for zero-day reports. Instead,

maintain a SECURITY.md file or similar documentation that instructs reporters on contacting us

(commonly a security@ email address, contact form, or a PM through a platform). For example,

Django’s security policy explicitly asks people to email security@djangoproject.com rather

than filing a public bug, and commits to a timely response. We should do the same: for example,

“If you discover a security issue, please email security@ourframework.org (PGP key fingerprint

XYZ).” Providing a PGP key for encrypted reports is a good practice for sensitive info, though not

all reporters will use it. The key point is to keep the vulnerability details out of public view until

a fix is ready – this is standard responsible disclosure.

Establishing a security team or responsible persons
Even if your ADF project is small, designate who will handle security reports. It might be the

core maintainers or a subset who are particularly responsive. They should monitor the reporting

channel (emails, etc.) regularly. In Django’s case, they have a dedicated security team and aim to

acknowledge reports within three working days.

Triage and risk assessment
When a report comes in, assess its validity and severity. If it’s unclear, perhaps ask the reporter

for a proof-of-concept or more details (they might have included one already, which helps). Use

a rating such as CVSS to determine severity (Critical/High/Medium/Low). This will inform how

quickly to act. For critical issues (e.g., an RCE or auth bypass in the framework), be prepared to

issue a fix very quickly. For lower severity, you might schedule it into the next regular release, but

still within a reasonable time (the industry standard is often within 90 days).

Chapter 8 235

Developing the fix in private
This is where platforms such as GitHub have a great feature: repository security advisories.

They allow maintainers to collaborate on a patch in a private fork or advisory draft, visible only

to invited contributors, and then publish an advisory once ready. We should leverage this or an

equivalent workflow. That means do not commit the fix to the public repo until disclosure time

(to avoid alerting attackers). Instead, perhaps create a temporary private fork for the fix, or if

using GitHub, open a private security advisory and attach a patch there. Test the fix thoroughly,

including verifying that it truly solves the problem and doesn’t break other security assumptions.

Sometimes, additional hardening is warranted once you dig into the issue.

Coordinated disclosure timing
Work with the reporter to decide on a disclosure timeline. Many researchers or companies use a

90-day policy (the reporter gives you 90 days before they go public, sometimes fewer if actively

exploited). If you can fix it sooner, that would be great. If you need more time, communicate that.

Often, open source projects aim to release a patch and advisory simultaneously and credit the

reporter in the advisory (if they want credit). Coordinated disclosure means both parties agree

on when to make the issue public, ensuring users can get a patched version at the same time the

vulnerability details are revealed.

Preparing the advisory
Write a clear security advisory or bulletin that will be published. This typically includes affected

products and versions, a brief description of the issue (e.g., “Improper validation in X module

allowed SQL Injection”), severity (perhaps a CVSS score or qualitative severity), impact (what an

attacker could do), and the solution (the new version or patches). Also, acknowledge the reporter.

Format-wise, if using GitHub security advisories, it has fields for these. Otherwise, you might

publish on your website or mailing list. For formal tracking, obtaining a CVE ID is good for broad

visibility. GitHub can assign CVEs for you (if you use their advisories and choose to publish them

on the CVE list). Alternatively, you can request one from MITRE or a CNA. It’s worth becoming a

CNA (short for Certified Numbering Authority) if your framework grows popular, as it stream-

lines issuing CVEs. In any case, ensure the vulnerability gets a CVE so it’s indexed in databases

(OSV, NVD) – many users and tools rely on CVE identifiers to track whether they’re affected. The

advisory should be published in a place users will see: a dedicated Security Advisories page in the

repo, a security mailing list, a blog post, and so on, in addition to being in CVE feeds.

Evolving a Framework236

Issuing patches and updates
When ready, release the fixed version. Often, multiple release streams need updates – for exam-

ple, if you have an older supported version, you issue v1.3.1 and v1.2.5, and so on, so users on the

LTS version get a patch. Django does this by applying patches to the maintained branches and

releasing new packages for each. Make sure the release notes call out that it’s a security fix. Also,

provide minimal patches if possible (such as a git diff or patch file in the advisory) for users who

can’t upgrade the whole framework but want to apply a hotfix.

At disclosure time, go public: publish the advisory (on GitHub, make the draft advisory public

with a GHSA ID and CVE), send an email to any announce lists (some projects have a low-traffic

security-announce list), and tweet it if appropriate. The announcement should tell users: “Update

to version X immediately. This fixes a critical security issue (CVE-2025-12345).”

Post-incident analysis
After addressing the bug, analyze what went wrong and how to prevent similar bugs. If it was a

design oversight, incorporate that knowledge (maybe update your threat model and tests). If it

was a process slip (e.g., a lack of code review in some area), improve processes. This is similar to

postmortems in SRE – learn and improve.

Handling public vulnerability reports
Sometimes, someone might publish a 0-day (disclose it publicly without informing you first). Or,

a vulnerability may become public accidentally. In such cases, react fast: confirm the issue, if it’s

valid, communicate to users that you’re aware and working on a fix, then follow up with the fix

as soon as possible. Transparency is key – you don’t want users panicking or feeling you’re hiding

something. If a third-party advisory comes out (say someone posts on Full Disclosure Mailing

List), consider that your clock for response has started.

Incident response for compromises
If, say, your framework’s infrastructure is compromised (e.g., an attacker pushes a malicious release),

treat it as a full-blown incident. Rotate keys, check source integrity, and inform users immediately

with clear guidance (such as “don’t download version X; it was compromised – use X+1, which

we’ve verified”). This overlaps with governance (protecting keys, 2FA, etc., to minimize such risk).

Community trust
By handling vulnerabilities professionally, you build trust with your users. Projects such as Djan-

go or Spring are known for their solid security practices, partly because they have a track record

Chapter 8 237

of timely patches and detailed advisories. Always err on the side of the user’s safety – even if a

bug is embarrassing, disclosing it and fixing it is better than silently patching without telling

anyone (which leaves users of older versions in the dark). Responsible disclosure is a two-way

street: encourage researchers to report to you first, and in return, respond quickly and give them

credit. Many open source projects also maintain a hall of fame or list of contributors who reported

security issues, encouraging further reports.

As an example, GitHub’s own advisory database is public and includes thousands of advisories

from open source projects. The process typically is: someone reports privately, maintainers create

a private fix, then publish an advisory so that GitHub (and others) can alert users dependent on

that project. We should strive to use these modern workflows for smooth coordination.

In summary, be prepared: have a contact point for vulnerabilities, a plan to fix quickly, a private coordi-

nation method, and a disclosure mechanism to alert users. This way, when (not if) a security issue arises,

it’s handled with minimal damage and users remain confident in the framework’s security posture.

Security practices mapped to ADF maturity levels
Alternative structured guidance on the optimal way to introduce security-related practices is in

the following table:

Security Practice Min. Maturity Level Rationale / Focus at this Level

1. Basic Security Awareness

Level 2: MVF

Foundational; necessary even for minimal

frameworks built by a small team.

2. Secure Dependencies

(Basic Scanning/Updates)

Essential hygiene; even simple

frameworks rely on external code.

3. Input Validation Basics Included if fundamental to the

framework’s core function, even in a

minimal version.

4. Secure-by-Default

Framework APIs

Level 3: Bullet-proof

As the framework becomes modular

and extensible, secure defaults become

crucial for users.

5. Security Testing

Integration (Basic SAST)

Ensures baseline code quality as the

framework gains broader use.

6. Documented Security

Guidelines

Essential for users to understand and

correctly use the framework’s security

aspects.

Evolving a Framework238

Security Practice Min. Maturity Level Rationale / Focus at this Level

7. Advanced Security

Features (Built-In Auth/

Sec Mgmt)

Level 4: Advanced

Addresses complex use cases requiring

built-in, robust security mechanisms.

8. Automated Security

Testing (Advanced DAST/

IAST/SCA)

Comprehensive testing needed for highly

flexible frameworks used in diverse

environments.

9. Threat Modeling Proactive risk identification needed as

framework complexity and integration

points increase.

10. Security Audits and

Penetration Testing

Level 5: Ecosystem

Formal validation required for mature

ecosystems with wide adoption /

community trust.

11. Security Governance

and Ecosystem Monitoring

Necessary to manage security across

the framework and its community

extensions.

12. Proactive Vulnerability

Management

Formal processes are needed for

handling vulnerabilities in a widely used,

complex framework.

Note: Level 1 (unextracted) is not listed as specific framework security practices don’t apply;

security relies entirely on the host project.

Figure 8.1: ADF security practices by maturity level

Chapter 8 239

Integrating security into an ADF is evolutionary, not a static checklist. As an ADF matures, security

practices must evolve with its capabilities and adoption. Initially, at the MVF level, the emphasis

is on basic security hygiene: developing team awareness, secure dependency management, and

essential input validation.

As the framework advances to a more robust, “bullet-proof” state (Level 3), security becomes

formalized. This includes secure-by-default APIs, initial automated security testing such as SAST,

and clear security guidelines for developers. This stage focuses on building a reliable foundation

for common use cases.

Further maturity (Level 4: Advanced and Level 5: Ecosystem) requires a proactive security posture.

This encompasses advanced built-in security features, extensive automated testing (DAST, IAST,

SCA), threat modeling, formal security audits, penetration testing, governance, and proactive

vulnerability management throughout the framework ecosystem, including community con-

tributions. This layered approach ensures security scales with the framework’s complexity and

the trust users place in it.

Finding inspiration from the creators
This section explores foundational philosophies, the benefits and drawbacks of framework usage,

evolution and future trends, and finally, best practices and the developer experience. It provides a

verifiable and insightful resource, drawing upon interviews, talks, and writings from the creators

and key contributors of frameworks such as Ruby on Rails, Django, Node.js/Deno, React, Vue.js,

Angular/Qwik, Spring, and ASP.NET.

Quick tip: Need to see a high-resolution version of this image? Open this book in

the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code or visit packtpub.com/unlock, then use the

search bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

http://packtpub.com/unlock

Evolving a Framework240

Key role of Developer Experience (DX)
Frameworks are the kind of software that is built by developers for developers. Thus, focus on DX

seems obvious, but its significance should not be overlooked. The success of the Ruby on Rails

(RoR) ADF, for example, stems from its foundational principle of “Optimize for programmer hap-

piness,” as articulated by its creator, David Heinemeier Hansson, in the RoR strategy document

at https://rubyonrails.org/doctrine#optimize-for-programmer-happiness:

Created by Adrian Holovaty and Simon Willison in a newsroom environment, Django was built

with practicality and rapid development in mind. Its philosophy centers on making web devel-

opment efficient and enjoyable: https://www.agiliq.com/blog/2008/06/an-interview-with-
adrian-holovaty-creator-of-djang/

The overall developer experience is shaped not just by core concepts but also by tooling and syntax.

Ryan Dahl (who is known as the creator of Node.js and Deno) advocates for ensuring frameworks

remain usable with simple tools, preventing over-reliance on complex IDEs. Conversely, Deno

differentiates itself partly through its integrated tooling suite. Miško Hevery acknowledged that

Qwik’s “$-sign” syntax, while potentially jarring initially, was a necessary mechanism to enable

resumability’s benefits without creating an overly burdensome developer experience. These

examples show that DX involves deliberate design choices and trade-offs between underlying

technical needs and developer convenience.

Maintenance effort grows over time
Maintaining a large framework requires substantial ongoing effort, extending beyond the code

itself: https://www.youtube.com/watch?v=tgE-KZcFs6s

“Optimizing for happiness is perhaps the most formative key to Ruby on Rails. It

shall remain such going forward.”

Adrian Holovaty: “Generally, the goal is to make Web development fast, fun, and

easy for the developer, while keeping performance as fast as possible and code as

easy to understand as possible.”

https://www.agiliq.com/blog/2008/06/an-interview-with-adrian-holovaty-creator-of-djang/
https://www.agiliq.com/blog/2008/06/an-interview-with-adrian-holovaty-creator-of-djang/
https://www.youtube.com/watch?v=tgE-KZcFs6s

Chapter 8 241

Modern AI/LLM tooling promises to remove that burden from ADF developers, but it is still worth

remembering: you build it, you run it. Maintenance effort is one of the most underestimated

downsides in OSS (and literally any ADF) development.

The priority of documentation
Documentation is not just a burden that takes time and effort, as Rich Garris noticed:

https://gitnation.com/contents/full-stack-documentation

It is also a great way to improve your ADF quality:

https://react.dev/blog/2023/03/16/introducing-react-dev

And it’s even a great way to improve ADF adoption:

https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-
creator-evan-you-e383cbf57cc4

Juergen Hoeller (reflecting on Spring): “...this really extensive documentation also

needs to be maintained. We learned that quite the hard way over the years that it

keeps being a significant investment right to maintain up-to-date documentation

alongside the actual framework offering.”

“I believe that documentation is at least 50% of working on any software project.”

– Rich Harris (Svelte creator)

“While writing these docs and creating all of the examples, we found mistakes in

some of our own explanations, bugs in React, and even gaps in the React design…

We hope that the new documentation will help us hold React itself to a higher bar

in the future.”

– Dan Abramov (React core team)

https://gitnation.com/contents/full-stack-documentation
https://react.dev/blog/2023/03/16/introducing-react-dev
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4

Evolving a Framework242

The importance of community
Governance, community contributions, and open source ecosystems impact frameworks’ long-

term success and sustainability. The human element is vital to the health of open source frame-

works.

This is from the interview with Evan You by Evrone: https://evrone.com/blog/evan-you-

interview):

Another ADF Developer, Igor Minar from the Angular core team, created a whole story about the

importance of the community for the framework’s success: https://igorminar.github.io/
story-about-angular-passion-and-community

“We had this translation of Vue documentation into really well written Chinese,

so that helped a lot with Vue’s adoption in China… that helped quite a bit in the

early phases.”

– Evan You (Vue.js creator)

“It definitely helps to be good in those [algorithms/data structures], but building a

popular framework has a lot more to do with understanding your users, designing

sensible APIs, building communities, and long term maintenance commitment.”

– Evan You, creator of Vue.js

“Angular === Community”

“Embrace the community”

Us vs Them : “Often when I talk to people from the community I feel that they are

giving us more respect than what we deserve… we need to break the us vs them

barrier.”

https://evrone.com/blog/evan-you-interview
https://evrone.com/blog/evan-you-interview
https://igorminar.github.io/story-about-angular-passion-and-community
https://igorminar.github.io/story-about-angular-passion-and-community

Chapter 8 243

Framework security: responsibilities and challenges
Framework authors have a critical responsibility to ensure the security of millions of down-

stream applications: https://www.invicti.com/blog/web-security/why-framework-choice-
matters-in-web-application-security/

Balancing framework specialization and universalization
Remind your users that frameworks are not silver bullets, as they have intrinsic limitations that

should be explicitly acknowledged. Managing stakeholders’ expectations gives you trust and

loyalty from application developers:

https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-
creator-evan-you-e383cbf57cc4

https://geoffrich.net/posts/rich-harris-podrocket/

“Even if you build the most secure application, when your framework is vulnerable,

your application is too... Frameworks matter, because even if you build the most

secure application, when your framework is vulnerable, so is your application.”

– Ferruh Mavituna, founder of Invicti Security, makers of Acunetix and

Netsparker.

“It’s a bit of a trade off. The more assumptions you make about the user’s use case

then the less flexibility the framework will be able to afford… Or leave everything

to the ecosystem (as React does)… and there is a lot of churn. Vue tries to pick the

middle ground… the core is minimal, but we also offer incrementally adoptable

pieces (routing, state management, build toolchain) officially maintained and

designed to work together, but you don’t have to use them all.”

– Evan You (Vue.js creator)

https://www.invicti.com/blog/web-security/why-framework-choice-matters-in-web-application-security/
https://www.invicti.com/blog/web-security/why-framework-choice-matters-in-web-application-security/
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://geoffrich.net/posts/rich-harris-podrocket/

Evolving a Framework244

AI-native development with an ADF
Integrating generative AI with ADFs
An ADF is fundamentally a tool for imposing structure and discipline upon the software devel-

opment process. Its primary purpose is to enhance an engineering organization’s productivity

and performance by providing a standardized, simplified, and structured approach to common

engineering operations. By dictating execution flow and enforcing specific architectural patterns,

an ADF provides a blueprint that promotes long-term software health attributes such as main-

tainability, testability, and reusability. This blueprint establishes a clear contract between the

“framework developer,” who designs the system’s core components and control flows, and the

“application developer,” who builds features within those established constraints. The value of

an ADF is therefore directly proportional to the degree to which this contract is respected.

The advent of powerful generative AI coding assistants introduces a profound challenge to this

paradigm. The rise of practices such as “vibe coding,” where developers focus more on express-

ing intent and less on the specific code being generated, creates a significant risk of architectural

drift and the erosion of a framework’s conceptual integrity. An AI agent, optimized to produce

functionally correct code in the shortest possible time, does not inherently possess the specific,

localized knowledge of a given project’s ADF. Its training on vast, generalized code bases may lead

it to generate solutions that, while functional, violate the framework’s core patterns, bypass sanc-

tioned extension points, or introduce subtle inconsistencies. This unconstrained code generation

directly undermines the value proposition of the ADF, leading to a code base that is architecturally

incoherent and accumulates technical debt, despite the initial boost in developer velocity.

“One of the things I say from time to time is that DSLs are actually a good thing…

Why wouldn’t you want the language to be specific to the domain that you’re solv-

ing? As long as the DSL doesn’t decrease the amount of flexibility that you have, then

other things being equal, it’s probably a good thing. If it enables you to express the

ideas in your application more concisely and more consistently, then it’s probably

a good thing.”

– Rich Harris (Svelte creator)

Chapter 8 245

This establishes a clear and present need for a formal mechanism to imbue AI agents with deep,

actionable knowledge of a framework’s specific architectural constraints. It is not sufficient for

the AI to have a general understanding of a technology such as Django or React; it must under-

stand the specific implementation, extensions, and established patterns of the project at hand.

A formal, machine-readable definition of the framework’s rules is therefore not merely a helpful

supplement but an essential prerequisite for the successful and sustainable integration of AI

agents into a framework-driven Software Development Lifecycle (SDLC).

Constitutional AI as a guiding paradigm
The challenge of aligning an AI agent’s behavior with a set of predefined rules is not unique to

software engineering. The field of AI safety has developed a powerful paradigm for this purpose:

constitutional AI. This approach governs an AI’s behavior by embedding a predefined set of rules

or principles – a “constitution” – into its decision-making process. The goal is to ensure the AI’s

outputs align with human values and ethical standards. This is typically achieved through a

two-phase training process: a supervised learning phase where the model learns to critique and

revise its own responses based on the constitution, followed by a reinforcement learning phase

(Reinforcement Learning from AI Feedback, or RLAIF) where it refines its behavior based on

AI-generated feedback aligned with those same principles.

This paradigm can be effectively adapted from the domain of general ethics to the specific domain

of software architecture. In this context, the “constitution” is not a set of broad human values

but a precise codification of the architectural values, patterns, and rules of a specific ADF. The AI

coding agent must be guided to evaluate its own code generation against this framework-specific

constitution, prioritizing architectural compliance alongside functional correctness.

The user’s proposal to use Markdown-based policy files can thus be formalized as a practical

implementation of a “framework constitution.” By framing these files within the constitutional

AI paradigm, the concept is elevated from a simple “rules file” to a principled, scalable, and main-

tainable approach for aligning AI behavior with specific engineering standards. This provides a

robust mental model for designing, implementing, and evolving the mechanisms that ensure AI

agents act as responsible stewards of the code base’s architectural integrity.

Anatomy of a framework constitution (FRAMEWORK.md)
To be effective, a framework constitution must be a comprehensive, structured, and machine-par-

seable document that mirrors the architecture of the ADF itself. A well-designed ADF is not mono-

lithic; it consists of an inviolable core, well-defined extension points (such as plugins and mid-

Evolving a Framework246

dleware), specific architectural patterns (e.g., Model-View-Controller, Model-View-ViewModel),

and prescribed control flows. The FRAMEWORK.md file must capture this layered structure to provide

the AI agent with a clear map of the framework’s boundaries and intentions.

A robust FRAMEWORK.md file should be organized into the following sections:

•	 Preamble and Core Principles: A high-level mission statement that sets the AI’s role and

primary objective. This section uses “role prompting” to establish the agent’s persona.

Example: “You are an expert developer for the ‘X’ Framework. Your primary goal is to

generate code that is idiomatic, maintainable, and strictly adheres to the architectural

patterns outlined below. All generated code must be secure-by-default and align with the

framework’s core principles of modularity and separation of concerns.”

•	 Immutable Core (## DO NOT MODIFY): This section explicitly lists the core modules,

classes, and control flow logic that the AI agent should treat as inviolable. The agent

should be instructed to only use these components via their public APIs and never at-

tempt to modify their internal implementation. This defines the “black box” and “gray

box” components of the framework, establishing clear boundaries between the stable

core and extensible areas.

•	 Extension Points (## How to Extend This Framework): This is arguably the most crit-

ical section of the constitution, as it provides the sanctioned pathways for adding new

functionality. It must be rich with examples and clear instructions.

•	 Plugin Architecture: Detailed steps on how to create and register new plugins, including

boilerplate code and registration examples.

•	 Middleware and Processing Pipelines: Instructions for adding custom processors or

middleware to the framework’s request/processing pipeline, with examples of correct

implementation.1

•	 Decorator-Based Registration: Explicit guidance on using decorators, such as @app.

register(), to declaratively add new components such as agents, services, or routes.

This is a common pattern in modern ADFs for simplifying registration.1

•	 Architectural Patterns (## Key Architectural Patterns): This section explains the primary

architectural patterns the framework employs (e.g., MVC, MVVM, CQRS) and provides

canonical examples of their correct implementation within the framework’s context.1

This guides the AI to generate code that is not just functional but structurally consistent

with the rest of the application.

Chapter 8 247

•	 Data Flow and State Management (## Data Flow): A description of the prescribed

patterns for how data moves through the system and how application state should be

managed. If the framework uses patterns such as Event Sourcing, this section would detail

how to correctly create and handle events.1

•	 Security Principles (## Security Guardrails): A dedicated section for codifying a

“secure-by-default” approach. This section should list common vulnerabilities relevant

to the framework’s domain (e.g., citing CWEs such as Code Injection or OS Command

Injection) and provide explicit, actionable rules to prevent them.

Example: “To prevent SQL injection (CWE-89), always use the framework’s built-in ORM

with parameterized queries. Never construct raw SQL queries by concatenating strings

with user-provided input. All file uploads must be validated against a strict allowlist of

MIME types to prevent Unrestricted File Upload (CWE-434).”

The system prompt: establishing the AI’s persona
The entire interaction between a developer and the framework-aware AI agent should be gov-

erned by a master system prompt. This prompt, automatically included in every session, estab-

lishes the AI’s persona, its core directives, and its mode of operation. This technique, known as

“role prompting,” is highly effective for guiding an LLM’s behavior, tone, and intent. For this use

case, the persona should be that of a “Guardian of the Framework” – an expert developer whose

primary responsibility is to uphold the architectural integrity of the project.

An effective system prompt should be clear, specific, and authoritative. Here’s an example:

"You are an expert software engineer and architect specializing in the 'X'
Application Development Framework. Your primary directive is to generate
code that strictly adheres to the provided FRAMEWORK.md constitution. You
must prioritize maintainability, security, and the architectural patterns
defined in the provided context. Before providing a code solution, you
must first explicitly state the constitutional principles or patterns you
are applying and why they are relevant to the user's request. Your goal is
not just to provide a functional answer, but to educate the user on the
correct, framework-idiomatic way to build software."

This prompt sets clear expectations, forces the AI to be transparent in its reasoning, and frames

the interaction as a collaborative and educational process.

Evolving a Framework248

Embedding advanced prompting techniques in the constitution
To maximize the AI’s ability to generate high-quality, compliant code, the framework consti-

tution itself should be engineered with advanced prompting techniques in mind. Two of the

most powerful techniques are few-shot prompting and Chain-of-Thought (CoT) prompting.

Few-shot prompting provides the model with a small number of examples to demonstrate the

desired output format and content. CoT prompting goes a step further by providing a sequence of

intermediate reasoning steps that lead to the final answer, which has been shown to dramatically

improve an LLM’s performance on complex reasoning tasks.

The examples within the FRAMEWORK.md file should be structured not just as final code snippets

but as few-shot CoT exemplars. This proactively guides the AI’s reasoning process. When the

RAG system retrieves an example formatted with CoT, it shows the LLM not only what the correct

code looks like but also how to reason about the problem to arrive at that solution. As a powerful

pattern-matching system, the LLM is then more likely to adopt this step-by-step, principle-based

reasoning process when solving the developer’s novel problem, resulting in a more robust and

compliant output.

An example of a CoT exemplar within the FRAMEWORK.md file might look like this:

Task Example: Adding a new API endpoint for 'products'.

Reasoning Steps:

Objective: The goal is to create a new read-only API endpoint to list all
products.

Constitutional Principle: According to the 'Extension Points' section
of this constitution, all new API endpoints must be defined as classes
inheriting from BaseAPIView and registered in the routers/api.py file
using the router.add_route() method.

Architectural Pattern: This framework uses a service-oriented pattern. The
view layer should not contain business logic. Data must be fetched through
the ProductService.

Step 1: Define the View: Create a ProductListView class in views/product_
views.py that inherits from BaseAPIView. Inside its get method, call
ProductService.get_all_products() to retrieve the data.

Step 2: Register the Route: In routers/api.py, import the ProductListView
and add the following line to register the URL pattern: router.add_
route('/products', ProductListView).

Final Code Implementation:

Python

File: views/product_views.py

Chapter 8 249

from services.product_service import ProductService

from core.views import BaseAPIView

class ProductListView(BaseAPIView):

def get(self, request):

products = ProductService.get_all_products()

return self.json_response(products)

File: routers/api.py

from core.router import router

from views.product_views import ProductListView

router.add_route('/products', ProductListView)

Meta-prompts and self-correction loops
To further enhance reliability, the system can incorporate a self-correction loop using me-

ta-prompting techniques. Meta-prompting involves instructing the model to reflect upon and

refine its own outputs. This can be combined with the principle of self-consistency, where the

model generates multiple lines of reasoning and selects the most coherent one.

In practice, the system can automatically append a final instruction to the prompt after the AI

has generated its initial code solution. This instruction triggers a “constitutional review” cycle.

An example of a self-correction meta-prompt is as follows:

"Review the code you have just generated. Cross-reference it against the
rules and examples provided in the FRAMEWORK.md context. Does it fully
comply? Specifically, verify that you have used the correct extension
points and followed the prescribed data flow patterns. List any potential
violations you find, explain why they are violations, and then provide a
corrected, fully compliant version of the code."

This forces the model to perform a second pass on its own work, significantly increasing the

probability that the final output will be correct and architecturally sound.

Multi-agent systems: a phased approach to a “panel of experts”
The concept of a single, monolithic “agentic developer” is powerful, but a more robust and scalable

paradigm is the multi-agent system. However, transitioning directly to a large, collaborative “panel

of experts” can be a significant architectural leap. A more practical and evolutionary approach allows

a development team to adopt agentic principles incrementally, scaling complexity only as required.

This phased approach reframes the agentic developer’s evolution, starting with a single, dedicated

expert and gradually decomposing it into a specialized panel.

Evolving a Framework250

Phase 1: the dedicated “framework expert”
The first step is to encapsulate all framework-specific knowledge and interactions into a single,

dedicated sub-agent. Instead of the main orchestrator knowing the details of the ADF, it delegates

any framework-related task to a trusted “framework expert” agent.

•	 How it works: The main agent receives a high-level task (e.g., “Add a new feature to allow

users to upload a profile picture”). It recognizes that this requires framework interaction

and delegates the entire implementation task to the “framework expert.”

•	 Constitutional basis: This expert agent is governed by the complete FRAMEWORK.md constitu-

tion. It loads the entire set of rules, patterns, and examples to ensure its output is compliant.

•	 Advantage: This immediately introduces a clean separation of concerns in an agentic way.

The primary agent focuses on high-level planning and user interaction, while the sub-agent

becomes the sole guardian of architectural integrity. This achieves the core goals of frame-

work-aware AI without the initial complexity of managing multiple specialized agents.

Phase 2: decomposition into a specialized panel
As an ADF grows, it often develops distinct, complex sub-domains that require specialized knowl-

edge. A single “framework expert” may become too broad, leading to the same context pollution

issues a monolithic agent faces.

The next logical step is to decompose the “framework expert” into a panel of more narrowly

focused sub-agents.

Example breakdown: An ADF might have distinct patterns for creating plugins versus adding

middleware. This could lead to the creation of the following:

•	 plugin_expert: Knows only the rules and CoT examples for creating and registering

plugins

•	 middleware_expert: Specializes in the framework’s request/response pipeline

•	 data_layer_expert: Manages all database interactions, schema migrations, and ORM

usage

•	 security_analyst_agent: Scans code for vulnerabilities based on the security guardrails

in the constitution

Each of these agents is governed by its own “agent charter” – a scoped, specialized version of the

constitution that grants it specific permissions and provides domain-specific examples.

Chapter 8 251

Here’s an example agent charter for data_layer_expert:

role: data_layer_expert

description: "Specializes in schema design, migrations, and ORM-based
queries. Enforces data integrity and performance best practices."

allowed_tools:

- database_client

- schema_migrator

constitution_refs:

- "## Data Flow & State Management"

- "## Security Guardrails"

Charter: Data Layer Expert

Primary Directive: All data access must be performed through the
framework's ORM. Raw SQL is forbidden unless explicitly sanctioned for
performance-critical operations and reviewed.

CoT Example: Adding a New Column to the 'Users' Table

1. **Objective:** Add a non-nullable `last_login` timestamp to the `User`
model.

2. **Constitutional Principle:** Schema changes must be managed via the
`schema_migrator` tool. Direct `ALTER TABLE` commands are prohibited.

3. **Step 1: Modify the Model:** In `models/user.py`, add the `last_login`
field...

4. **Step 2: Generate Migration:** Run the command `schema_migrator
generate...`

5. **Step 3: Apply Migration:** Run the command `schema_migrator apply...`

Phase 3: hierarchical orchestration
With a panel of experts in place, the role of the top-level agent evolves into a master orchestrator.

This agent is no longer just a simple task decomposer; it is a strategic delegator.

Its core responsibilities in this mature stage become the following:

1.	 Task decomposition and planning: Analyzing a developer’s request and breaking it down

into a logical sequence of sub-tasks.

2.	 Expert agent selection: Crucially, it must analyze the nature of each sub-task and dispatch

it to the most relevant expert from the panel. Sometimes a task might be resolvable by

different agents, and the orchestrator must make a strategic choice.

Evolving a Framework252

3.	 Contextual delegation: Invoking the selected agent with the specific sub-task, providing

only the necessary code context and its scoped constitutional charter.

4.	 Result synthesis and verification: Assembling the outputs from the various agents into

a coherent whole and performing a final validation against the root constitution before

presenting the complete solution.

This phased, constitutionally-governed approach provides a clear and practical path toward

building more scalable, secure, and reliable AI-driven development systems. It allows teams to

start simply and progressively invest in a more sophisticated agentic architecture as their frame-

work and needs evolve, mirroring the growth of expert human teams.

Summary
This book has taken you on a tour through the world of Application Development Frameworks

(ADFs), from the first idea all the way to how they keep growing. The main goal was to give

software engineers, teams, and companies the know-how and real-world advice they need. We

didn’t just talk about how to build your own ADFs, but how to do it so they’re truly valuable, make

developers’ lives better, and help create a really great engineering environment.

1. What ADFs are all about and why they’re a big deal
(Chapter 1)
At its heart, an ADF is more than just code you can reuse. Think of it like a basic “skeleton” that

gives you a clear way to build your applications. It sets the rules for how things should run and

suggests smart ways to design your software. We’ve pointed out how ADFs are different from

things such as libraries, SDKs, platforms, and even Domain Specific Languages (DSLs). What

makes them special is how they help make the whole process of building software (the Software

Development Lifecycle or SDLC) smoother. They do this by cutting down on repetitive coding,

making things less complicated to think about, and encouraging good habits such as making code

easier to take care of and test. The big win with a good ADF is that it helps manage complicated

stuff, so developers can spend their time building useful features instead of solving the same old

tech problems over and over.

2. Why and how to get started with your ADF (Chapters 2 and 8)
While Chapter 2 focused on the engineering side, Chapter 8 explored the topic from an organiza-

tional perspective. The best ADFs usually don’t just appear out of nowhere. They often grow out

of real, everyday software projects – when you’re trying to fix annoying problems or stop doing

the same tasks again and again. Chapter 2 introduced systems engineering ideas to help us think

Chapter 8 253

about this, such as understanding the “operations environment” (where your ADF will be used)

and its lifecycle. Starting an ADF project (as we dived into in Chapter 8) usually begins when you

spot these kinds of chances by looking at how your apps are already built and finding common

ways things are done or pieces of code that can be reused. To make it work, you need to team

up with others (your stakeholders!), figure out who cares about it (from other developers to the

bosses), and explain clearly why it’s a good idea. We talked in Chapter 2 about why it’s important

to estimate the Return on Investment (ROI) – thinking about how much effort it’ll save and how

often it’ll be used – to get the support and money you need. This book suggests taking things

step by step, starting with some “quick wins” and basic versions (Minimal Viable Frameworks

or MVFs) that you build and pull out from projects you’re already working on, as shown with the

sample LLM framework in Chapter 6. Thinking about an Open Source Software (OSS) approach,

even for internal projects, can also bring big benefits such as more innovation and better security.

3. Smart building: good design, solid tech, and practical
steps (Chapters 3, 4, 5, and 6)
A strong ADF is built on good design ideas and practical development steps. In Chapter 3, we

introduced the “ADF blueprint,” which lists the main ways to structure your framework (such as

how to define and register your main “objects,” manage how they’re processed, and add plugins).

We also looked at the “ADF canvas” as a handy tool to get everyone on the same page about the

framework’s goals, value, design, tech, and risks. Knowing the “ADF maturity model” (from “un-

extracted” to a full “ecosystem”) helps you plan how to invest and grow your framework over time.

Chapter 4 was all about “defining your tech stack” – making good choices about programming

languages (core, interface, and configuration ones), storage, how different parts will communi-

cate (transports and contracts such as REST or gRPC), any special tools for calculations, and the

development tools you’ll provide (such as code generators and testing engines).

Then, Chapter 5 dived into “architecture design.” This means thinking about the main parts of

your framework (the core, libraries, drivers, basic building blocks, and how things flow). We

explored important design patterns such as MVC (and its variations, such as HMVC, MVVM,

and MVP) for structuring your code, and data management patterns such as CQRS and Event

Sourcing for handling information effectively. A big theme was designing your framework so

it’s easy to extend later on.

Evolving a Framework254

Chapter 6, ADF Development Fundamentals, brought these ideas to life. It showed how to start proto-

typing by looking at existing apps, and how to build up your framework step by step. For example,

by creating clear message types (such as SystemMessage, UserMessage, AssistantMessage) and

main building blocks (such as OpenAIAgent, RoleRouter, Application) for a system that uses AI

agents. This chapter emphasized using modern tools (such as uv for packaging, ruff for code style,

and pytest for testing) and following Agile ideas to keep development responsive.

4. Making your framework real: docs, releases, and security
(Chapters 6, 7, and 8)
The usefulness of your ADF gets a significant boost from good documentation, how you package and

release it, and its security. Chapter 7 was all about Documenting and Releasing. Clear and complete

documentation (how-to guides, tutorials, reference docs, and explanations) is super important if you

want people to use your framework. Releasing updates in a reliable way, using things such as semantic

versioning and clear changelogs, builds trust. The real-world development in Chapter 6 also showed

why good packaging (using tools such as uv) and CI/CD (automating builds and tests) are so important.

Security isn’t just an add-on! As discussed in Chapter 8, Security Along the ADF Evolution Path, it’s

a must. This means things such as making your framework’s APIs secure by default (like Django

does with its templates), keeping different parts of your framework separate and secure (sand-

boxing), having clear rules for how components talk to each other, and using security features

built into your programming language. It also includes using security tools (SAST, SCA, DAST)

and having clear plans for what to do if there’s a security problem or someone finds a weakness.

The level of security-related effort needs to grow as your framework matures.

5. Keeping it going: a product approach for lasting value
(Chapters 2 and 8)
The work isn’t done when you finish building the first version. “Guiding the ADF Initiative: A

Product Path” (from Chapter 8) is all about treating your ADF like an internal product. This means

you need to keep managing it, have a plan for how it will grow, and get feedback from the de-

velopers who use it. Making changes, setting priorities, and putting out regular updates are all

part of it. Chapter 6 showed this kind of step-by-step development, where the first version gets

better based on how it’s used in real apps, leading to new examples and extra libraries. It’s really

important to measure whether your ADF is successful (as we first discussed with ROI in Chapter

2) by checking how many people are using it, what developers think of it (DevEx), and whether

it’s actually making the software development process better (such as by saving time). This in-

formation helps you prove its value and decide how to improve it.

Chapter 8 255

6. The never-ending story: the rewarding work of building
frameworks (Chapter 8)
Creating an ADF is a challenging yet highly rewarding task. It involves a continuous process of

assessing needs, developing solutions, collaborating with others, and enhancing tools to ensure

that other developers can be more productive and satisfied. When you hear from people who’ve

created renowned frameworks (as we touched on in Chapter 8’s “Finding Inspiration from the

Creators”), they frequently emphasize the importance of prioritizing the developer experience,

keeping up with maintenance and documentation, and fostering a robust community. These

factors contribute to a framework’s long-term success.

Frameworks aren’t the answer to every software problem, but a well-made ADF that keeps im-

proving can be a powerful way to do great work. It helps teams build better software more quickly,

lets them focus on new ideas, and makes coding more enjoyable. Hopefully, the ideas and advice

in this book will help you as you build your own frameworks, so you can create tools that not only

fix problems but also inspire and help others.

7. Final words: the last mile
When writing this book, I became so obsessed with the ideas and concepts of application devel-

opment frameworks that I started to see opportunities to build them everywhere. It even extends

beyond software development topics into my personal life: I established my own “fitness frame-

work,” “writing framework,” and “cooking framework.” What I want to convey is that frameworks

are really cool and interesting, but not necessarily “must-have” things. You can do your fitness

exercises, content writing, and barbecue without any frameworks. This is also true for software.

However, if you seek excellence and are willing to invest your time and energy in exploring frame-

works, you can achieve a small percentage improvement in what you are doing. Sometimes, it

makes a difference.

Unlock this book’s exclusive benefits now
Scan this QR code or go to packtpub.com/unlock, then search this

book by name.

Note: Have your purchase invoice ready before you start.

http://packtpub.com/unlock

9
Unlock Your Book’s
Exclusive Benefits

Your copy of this book comes with the following exclusive benefits:

•	 Next-gen Packt Reader
•	 AI assistant (beta)
•	 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Have your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note:

Did you buy this book directly from Packt? You don’t need an invoice. After complet-

ing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help

Unlock Your Book’s Exclusive Benefits258

Step 2
Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure X.1 if you’re on desktop), search for this

book by name. Make sure you select the correct edition.

Figure 9.1: Packt unlock landing page on desktop

Step 3
Once you’ve selected your book, sign in to your Packt account or create a new one for free. Once

you’re logged in, upload your invoice. It can be in PDF, PNG, or JPG format and must be no larger

than 10 MB. Follow the rest of the instructions on the screen to complete the process.

http://packtpub.com/unlock

Chapter 9 259

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your

invoices and more. The following QR code will take you to the help

page directly:

Note:

If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
mailto:customercare@packt.com

Index

Symbols
3D

reference link 13
4+1 View Model 22

A
ADF blueprint 53
ADF Canvas 53
ADF Canvas guide 79-81

tech stack, defining 80
ADF-enabled APIs

documentation strategy 212
ADF initiative 223

guiding 227
opportunity 224
quick wins 225
support, to secure resources 226
team 225
transparency 226
usability 226

ADF maturity levels
security practices mapped 237-239

ADF MM levels 74
advanced extensible framework 77, 78
Bulletproof Framework 76

comprehensive ecosystem
framework 78-81

minimal viable Framework (MVF) 75
unextracted 74, 75

ADF structure patterns 54
entity/object definition 54
entity/object registration 57-59
functional plugins 62, 63
object processors, managing 59-62
source code structuring 69
technical flow pattern 64

Agent Protocol 165
Agile Maturity Model (AMM) 72, 73

benefits 72
Agile principles

embracing, for responsive
development 183-187

alpha releases 215
Amazon Kinesis 110

features 110, 111
Amazon Neptune 107

features 107
Amazon Redshift 105

features 105
Amazon Web Services (AWS) 101

reference link 11

Index262

Android SDK 194
Angular libraries 195
Apache Avro 122
Apache Hadoop

benefits 134
challenges 134

Apache Kafka 110
features 110

Apache Pulsar 111
Apache Spark 135

benefits 135
challenges 135

API documentation 209
developer productivity, enhancing through

integrated tooling 211
integration, with generation tools 211
schema-driven, versus code-first

approach 210
Application Developer 55
application development framework

(ADF) 3, 10, 27, 53, 87, 139, 189, 244
adoption metrics 228, 229
advisory, preparing 235
Application Programming Interface (API) 11
benefits 34, 35
community, importance 242
community trust 236
coordinated disclosure timing 235
definition 10
Developer Experience (DevEx) metrics 229
Developer Experience (DX), key role 240
documentation, priority 241
DSL 20, 21
feedback loops, establishing 228
fix, developing in private 235
framework 15-18

generative AI, integrating with 244, 245
historical practices 6-10
incident response and vulnerability

disclosure 234
incident response for compromises 236
isolation 231
iteration 228
language-specific security strategies 233
maintenance effort, over time 240
patches and updates, issuing 236
Platform 18-20
post-incident analysis 236
prioritization 228
product mindset, adopting 227
public vulnerability reports, handling 236
responsibilities and challenges 243
risk assessment 234
roadmapping 228
role-based access control,

for components 231, 232
SDKs 14, 15
SDLC impact metrics 229
secure-by-default framework APIs 230
secure runtime patterns 232, 233
security team, establishing 234
software library 12, 13
specialization and universalization 243
strict abstraction boundaries 231
success factors 32
triage 234

Application Programming Interface (API) 11
architects 33, 225
architectural design 139
Architecture Decision Records (ADRs) 92
Architecture Frameworks 21, 22

4+1 View Model 22
benefits 22

Index 263

Enterprise Architecture
Frameworks (EAFs) 22

Software Architecture Frameworks (SAFs) 22
TOGAF (The Open Group Architecture

Framework) 22
Zachman Framework 22

Atomicity, Consistency, Isolation,
Durability (ACID) 95

AWS DynamoDB 101
features 102

Azure
reference link 11

Azure Cosmos DB 102
features 102

Azure DevOps Wiki 196

B
batch processing pattern 68
beta releases 215
black boxes 12
block storage 108

features 109
blueprint 53
Boost

reference link 13
build and deployment process 213

build automation 214
release and artifact distribution 214
repository and branching strategy 213

business analysts 34

C
Capability Maturity Model

Integration (CMMI) 73
CAP Theorem 95

Cassandra 100
features 100

Certified Numbering Authority (CNA) 235
Chain-of-Thought (CoT) prompting 248
ClickHouse 104

features 104
code design patterns 146

HMVC 148, 149
MVC 147, 148
MVP 150
MVVM 149, 150

collaboration platforms 217, 218
collective code ownership 185
columnar databases 104

Amazon Redshift 105, 106
ClickHouse 104, 105

Command Query Responsibility
Segregation (CQRS) 68, 151

communication protocols 123
GraphQL 126-128
Representational State

Transfer (REST) 123-125
Compute Unified Device

Architecture (CUDA) 132
benefits 132
challenges 133
characteristics 132
limitations 133
use cases 132

configuration and management
languages 94, 95

Configurator pattern 64
constitutional AI 245

advanced prompting techniques,
embedding 248

framework constitution 245-247

Index264

meta-prompts 249
self-correction loops 249
system prompt 247

content management system (CMS) 143
Content Security Policy (CSP) 233
continuous integration (CI) 177
continuous integration/continuous

deployment (CI/CD) 74
control flow 13
core programming languages 93
crowdsource testing 215
Cursor

URL 209

D
data binding techniques

data binding, with WebSockets 67
data flow optimization 67
observables and reactive

programming, using 67
virtual DOM and diffing algorithms 67

Data-Context-Interaction (DCI) pattern 62
data flow 67

protocols and contracts 67
data loader 92
data management patterns

CQRS pattern 151
Event Sourcing pattern 151, 152
Materialized View pattern 152, 153

data transfer object (DTO) mappings 151
declarative binding 66
deep linking 200
dependency injection (DI) 154
deployment scenarios 202

design patterns 146
code structure patterns 146
data management patterns 146

detailed architecture diagrams 202
Developer Experience (DevEx) metrics 229
developer experience (DevX) 62

role 240
developers 34
development tooling 83, 136, 137

code and code structure generators 83
documentation engines 83
testing engines 83

device drivers
reference link 13

DevOps Maturity Model 74
Disciplined Agile Delivery (DAD) 22, 23
distributed computing engines 134

Apache Hadoop 134
Apache Spark 135

distributed log storage 109
Amazon Kinesis 110, 111
Apache Kafka 110
Apache Pulsar 111
platform features, comparing 111

Django 30, 58, 82, 194, 199
URL 17

Django Enhancement Proposal (DEP) 186
Django REST Framework (DRF) 142, 212
DocFX 194

URL 194
Document360 198

URL 198
documentation

application developers, supporting in
creating API documentation 210

Index 265

architecture references,
providing 194, 195, 202, 203

as continuation, of ADF 190-192
building 200
concept-level description, creating 201, 202
conceptual documentation 192
contextual navigation 200
cross-linking 200
end-to-end generation 197, 198
explanations 192
foundation 190
hosting 197, 198
How-to guides 192, 205, 206
navigation, structuring 199
ongoing maintenance 207-209
publishing 197, 198
publishing and hosting, with source

control systems 195-197
reference documentation 192, 206, 207
search, enhancing with indexing 200
search, enhancing with metadata 200
strategy 207-209
strategy, for ADF-enabled APIs 212
tutorial guides, writing for ADF

adoption 203-205
tutorials 192

documentation generation
automating 193

Docusaurus 197
URL 197

Domain Specific Language (DSL) 20, 21, 210
Doxygen 195

URL 195
DRF Browsable API

URL 212
Drupal 195

E
Early Subroutine Libraries 7
Elasticsearch 103

features 103
engineering leaders 32, 33, 225
Enterprise Architecture

Frameworks (EAFs) 22
entities/objects

definition 54, 55
Model-View-Controller (MVC) pattern 56
Model-View-Presenter (MVP) pattern 56
Model-View-Template (MVT) pattern 56

error handling and recovery pattern 69
elements 69

event-driven architecture (EDA) approach 68
Event Sourcing pattern 151

challenges 152
Express.js 100
extension 12
Extreme Programming (XP) 183

F
FAISS 114
FastAPI

URL 212
feedback loops 184
fellow developers 225
few-shot prompting 248
file storage 108

features 108
Flow 25
FLUX 57

Index266

FORTRAN Compilers 7
framework 15, 16, 21
framework architecture

application-level libraries and drivers 145
components 144
context libraries and drivers 145
core components 144
core libraries and drivers 145
core principles 140, 141
ecosystem, extending 142
extensibility 141
final layer, of implementation 143
foundation, building 141
general tasks 140
libraries and drivers 145
maintainability 141
modularity 140
primitives 145
scalability 141

framework constitution 245
Framework Developer 55
FRAMEWORK.md

anatomy 246, 247
framework structuring, for extensibility 153

API-first design 154
configuration management 154
dependency injection (DI) 154
design patterns, leveraging 153
extensible data model 154
modular design 153
versioning strategy 154

Fumadocs
URL 209

G
General-Purpose computing on Graphics

Processing Units (GPGPU) 132
generative AI

integrating, with ADFs 244, 245
GitHub Pages 196
GitLab Pages 196
Google Web Toolkit (GWT) 150
graph databases 106

Amazon Neptune 107
Neo4j 106

GraphQL 126
benefits 126
challenges 126
limitations 126
principles 126
use cases 127

gray box 12
gRPC 128

benefits 129
challenges 129
for user management 130, 131
key principles 129
limitations 129
use cases 129

H
hardware abstraction libraries (HAL)

reference link 13
Harvard University 198
Hierarchical Model-View-Controller

(HMVC) pattern 56, 148, 149
High-Performance

Computing (HPC) 117, 132

Index 267

HTTP/2 129
HTTP transport layer 178

I
imperative binding 66

inheritance 57
Intercom 198
Interface Definition Language (IDL) 129
interface programming languages 94
internal linking 200
International Council on Systems

Engineering (INCOSE) 28
inter-process communication (IPC) 117
issue tracking 217, 218

J
Javadoc 194

URL 194
JavaScript 82
JavaScript Object Notation (JSON) 121
Java standard library 194

K
k-nearest neighbors (kNN) 178
Kubernetes documentation 200

L
Large Scale Scrum (LeSS) 22, 23
Lawrence Journal-World

newspaper (LJWorld) 30
low-code frameworks

reference link 16

M
machine learning models

as framework components 135, 136
Massively Parallel Processing (MPP) 105
Material for MkDocs 198
Materialized View pattern 152, 153
math

reference link 13
MERN stack 100
message brokers 119

benefits 119
challenges 120
characteristics 119
considerations 120
limitations 120
use cases 119

MessagePack 123
message queue pattern 68
Meta 197
microservices 124
Microsoft Azure 198
Minimal Viable Framework (MVF) 225, 227
MkDocs 197

URL 197
mobile backends 124
Model-View-Controller (MVC)

pattern 56, 147, 148
Model-View-Presenter (MVP)

pattern 56, 150, 151
Model-View-Template (MVT)

pattern 56, 142, 148
Model-View-ViewModel (MVVM)

pattern 149, 150

Index268

module 12
MongoDB 99, 100

features 100
multi-agent systems 249

dedicated framework expert 250
framework expert, decomposing into

specialized panel 250
hierarchical orchestration 251, 252

multi-factor authentication (MFA) 205
MySQL 98

features 98

N
Neo4j 106

features 106
NestJS 212

URL 212
.NET 195
Network Attached Storage (NAS) 108
Network File System (NFS) 108
networking 118

benefits 118
challenges 118
characteristics 118
considerations 119
limitations 118
use cases 118

Node.js 100
URL 17

NoSQL databases 99
Azure Cosmos DB 102
Cassandra 100
DynamoDB 101
Elasticsearch 103
MongoDB 99, 100
Redis 101

O
object-oriented programming (OOP) 62
object storage 109
one-time data binding 66
one-way data binding 65
OnLine Analytical Processing (OLAP) 104
OpenAI LLM API

reference link 11
OpenAuth

reference link 13
Open Computing Language (OpenCL) 133

benefits 133
challenges 133
characteristics 133
limitations 133
use cases 133

OpenCV 195
OpenSearch 104
OpenSearch-backed vector store 178
OpenSearch k-NN 113
Open Source Maturity Model (OSMM) 74
Open-Source Software (OSS) 33, 48

community 49
cost efficiency 49
ecosystem 49
educational value 50
efficient technical problem resolution 50
enhanced security 49
improved quality and reliability 49
increased innovation and collaboration 49
interoperability and standards 50
market positioning and reputation 50
regulatory and compliance, benefits 51
talent attraction and retention 50
technological brand 49

Index 269

Operating Systems 7
Operator Framework

reference link 14
Oracle Database 99

P
package 12
PandaConnect

URL 209
PandaDoc API

reference link 11
parallelized calculation toolkits 132

Compute Unified Device
Architecture (CUDA) 132, 133

Open Computing Language
(OpenCL) 133, 134

permission manifest 231
pgvector 113
Pinecone 112
pip 173
pip-tools 173
Platform 18-20

examples 19
PostgreSQL 97, 113

features 97
Presentation-Abstraction-Control

(PAC) 57, 151
principle of least privilege 231
product managers 34
programming languages 82, 93

configuration and management
languages 82, 94, 95

core programming languages 93
interface programming languages 82, 94

proof of concept (PoC) 215

Property Graphs 107
Protocol Buffers (Protobuf) 122
prototyping

techniques and best
practices 158, 161-167, 170-183

Publish/Subscribe (Pub/Sub) pattern 68, 120
benefits 121
challenges 121
characteristics 120
considerations 121
limitations 121
use cases 120

Puppet 194
Python 194
Python libraries 198

Q
Qdrant 113
quality assurance (QA) 34
Quickstart 204

R
RAG storage engine

selecting 114, 115
transport technology 115, 116

React 100
reference link 18

React.js 31, 59
React Native 197
ReadMe 198

URL 198
Redis 101
Redis Source Available License (RSAL) 101
Redpanda

reference link 11

Index270

Redshift Spectrum 105
Registration pattern 57

examples 58
scenario 57

Reinforcement Learning from AI Feedback
(RLAIF) 245

relational databases 97
MySQL 98
Oracle Database 99
PostgreSQL 97, 98

release candidates (RCs) 215
release lifecycle phases 215

complementary release practices 216
initial versions (v0) 215
stable versions 216
versioning and metadata 216

Release Notes 216
remote procedure calls (RPCs) 82
repository security advisories 235
Representational State Transfer

(REST) 123-125
key principles 123, 124
use cases 124

Requests.py
reference link 13

Resource Description Framework (RDF) 107
responsive development

Agile principles, embracing for 183-187
reStructuredText (reST) files 194
Retrieval-Augmented Generation (RAG) 89

data loader 92
retriever 91
vector database 92

retriever 91

return on investment (ROI)
estimating 39-45, 48

role 164
RoleRouter 164
Ruby on Rails 194, 212
Rust 82, 233
RxJS 195

S
Scaled Agile Framework (SAFe) 22, 23
secure-by-design principles 234
Secure Systems Development Lifecycle

(SSDLC) 230
Segment 198
serialization formats 121

Apache Avro 122
JavaScript Object Notation (JSON) 121
MessagePack 123
Protocol Buffers (Protobuf) 122

Server Message Block (SMB) 108
Server-Side Public License (SSPL) 101
shared memory 117

benefits 117
challenges 117
limitations 117

single-page applications (SPAs) 124
single sign-on (SSO) 205
smart update detection 204
Software Architecture Frameworks (SAFs) 22
Software Delivery Frameworks 21, 23

benefits 23
Disciplined Agile Delivery (DAD) 23
Large Scale Scrum (LeSS) 23
Scaled Agile Framework (SAFe) 23

Index 271

Software Development Kits (SDKs) 14
software development lifecycle

(SDLC) 24, 25, 28, 245
impact metrics 229
models 36-39

Software Engineering Institute (SEI) 73
software library 12-14
source code structuring 69

best practices 71, 72
discoverability 70
minimal dependencies 70
navigation 70
principles 69, 70
source code availability 70

source control systems
using, for documentation publishing

and hosting 195-197
Sphinx 194

URL 194
Spring Boot 199
storage 108

block storage 108, 109
distributed log storage 109
file storage 108
object storage 109
requirements 95-97

streaming pattern 68
successful systems 28
success metrics

estimating 39-48
Systems Engineering Body of

Knowledge (SEBoK)
URL 28

Systems Engineering (SE) 28
lifecycle 28
operations environment 28, 29

T
technical flow pattern 64

Configurator pattern 64
data binding 65
data flow 67
declarative binding 66
error handling and recovery 68
imperative binding 66
one-time data binding 66
one-way data binding 65
Transformer pattern 65
two-way data binding 65
variations 65

Technical Product Managers (TPMs) 27, 225
techniques and best practices,

prototyping 158
agent routing 164-167
application context 167-173
control flow 161-163
core abstractions 161-163
framework, separating into

package 167-173
libraries and transport 178-183
minimal agent invocation 159, 160
packaging and distributing 173-178
roles 164-167

tech stack 80
considerations 92
defining 80
development tooling 83
programming languages 82
structure 88-90
technologies 80-82

TensorFlow 82

Index272

The Open Group Architecture
Framework (TOGAF) 22

Transformer pattern 65
Treblle

reference link 14
two-way data binding 65
TypeDoc 195

URL 195

U
Unity projects 195
user experience (UX) 62
uv

dependency management 173
environment management 173
project management 173
references 173
script execution 173

V
vector databases 92, 112

FAISS 114
OpenSearch k-NN 113
pgvector 113
Pinecone 112
PostgreSQL 113
Qdrant 113
Weaviate 113

VectorStore 114
View-Interactor-Presenter-Entity-Router

(VIPER) 57, 151

W
Weaviate 113
Weaviate Agents SDK 113
web APIs 124
Windows Presentation Foundation

(WPF) 149

Y
YARD 194

URL 194

Z
Zachman Framework 22
Zapier

reference link 11

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Domain-Driven Refactoring

Alessandro Colla, Alberto Acerbis

ISBN: 978-1-83588-910-7

•	 Find out how to recognize the boundaries of your system’s components

•	 Apply strategic patterns such as bounded contexts and ubiquitous language

•	 Master tactical patterns for building aggregates and entities

•	 Discover principal refactoring patterns and learn how to implement them

•	 Identify pain points in a complex code base and address them

•	 Explore event-driven architectures for component decoupling

•	 Get skilled at writing tests that validate and maintain architectural integrity

https://www.packtpub.com/en-us/product/domain-driven-refactoring-9781835889107

Other Books You May Enjoy276

System Design Guide for Software Professionals

Dhirendra Sinha, Tejas Chopra

ISBN: 978-1-80512-499-3

•	 Design for scalability and efficiency with expert insights

•	 Apply distributed system theorems and attributes

•	 Implement DNS, databases, caches, queues, and APIs

•	 Analyze case studies of real-world systems

•	 Discover tips to excel in system design interviews with confidence

•	 Apply industry-standard methodologies for system design and evaluation

•	 Explore the architecture and operation of cloud-based systems

https://www.packtpub.com/en-us/product/system-design-guide-for-software-professionals-9781805122319

Other Books You May Enjoy 277

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Building an Application Development Framework, we’d love to hear your

thoughts! If you purchased the book from Amazon, please click here to go straight to the Am-

azon review page for this book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packt.com
https://packt.link/r/183620857X
https://packt.link/r/183620857X

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1: Foundations of Application Development Frameworks
	Understanding the landscape and building a common language.

	Chapter 1: Introduction to Application Development Frameworks
	Getting the most out of this book – get to know your free benefits
	Next-gen reader
	Interactive AI assistant (beta)
	DRM-free PDF or ePub version

	Introduction and historical references
	Breaking down Application Development Framework
	Application Programming Interface
	Library
	Software Development Kit
	Framework
	Platform
	Domain Specific Language

	Differentiating ADF and other Types of Frameworks
	Architecture Frameworks
	Software Delivery Frameworks

	Software Development Lifecycle (SDLC) and Flow
	Summary
	Reference

	Chapter 2: Strategizing ADF for Success
	Introducing Systems Engineering as the grounding theory
	Establishing a Context for the framework
	Django
	ReactJS – building a better ads engine

	Defining ADF success factors
	Engineering leaders (CTOs, Engineering Directors, Team Leads)
	Architects
	Developers
	 Quality Assurance (QA)
	Product Managers and Business Analysts

	Exploring Software Development Lifecycle models
	Estimating success metrics and ROI
	Shift towards Open Source Software paradigm
	Increased innovation and collaboration
	Enhanced security
	Cost efficiency
	Improved quality and reliability
	Technological brand, community, and ecosystem building
	Talent attraction and retention
	Market positioning and reputation
	Interoperability and standards
	Efficient technical problem resolution
	Educational value
	Regulatory and compliance benefits

	Summary

	Chapter 3: Application Development Framework Blueprint
	ADF structure patterns
	Entity/object definition
	Model-View-Controller
	Model-View-Presenter
	Model-View-Template

	Entity/object registration
	Managing object processors
	Extending by functional plugins
	Technical flow pattern
	Data flow
	Error handling and recovery

	Source code structuring
	Ease of navigation and discoverability
	Minimal dependencies
	Source code availability
	Other recommendations and best practices

	ADF maturity model
	ADF MM levels
	Level 1: Unextracted
	Level 2: Minimal viable Framework (MVF)
	Level 3: Bulletproof Framework
	Level 4: Advanced extensible Framework
	Level 5: Comprehensive ecosystem Framework

	Defining a tech stack
	Technologies

	ADF Canvas guide
	Programming languages
	Development tooling

	Summary

	Part 2: Building a Framework
	Design, architecture, and implementation practices

	Chapter 4: Defining Your Tech Stack
	Key concept and alignment with technological realms
	Exploring languages and libraries
	Programming languages
	Core programming languages
	Interface programming languages
	 Configuration and management languages

	Storage, transport, and calculations
	Typical storage requirements
	Relational databases
	NoSQL databases
	Columnar databases
	Graph databases
	Storage
	File storage
	Block storage
	Object storage
	Distributed log storage
	Vector databases
	RAG storage engine selection
	Transport and contract definition
	Shared memory
	Networking in distributed systems
	Message brokers
	Pub/sub systems
	GraphQL
	gRPC

	Platforms for computation and distributed computing
	Parallelized calculation platforms and APIs
	Distributed computing engines

	Summary

	Chapter 5: Architecture Design
	General tasks of framework architecture
	Framework level: building the foundation
	Framework community level: extending the ecosystem
	Application level: the final layer of implementation

	Framework architecture components
	Core
	Libraries and drivers

	Design patterns
	Code patterns
	MVC
	HMVC
	MVVM
	MVP

	Data management patterns
	CQRS pattern
	Event Sourcing pattern
	Materialized View pattern

	Structuring a framework for extensibility
	Modular design
	Leveraging design patterns
	Dependency injection
	API-first design
	Configuration management
	Versioning strategy
	Extensible data model

	Summary

	Chapter 6: ADF Development Fundamentals
	Prototyping techniques and best practices
	A minimal agent invocation
	Defining core abstractions and control flow
	Introducing roles and agent routing
	Separating the framework into a package and introducing the application context
	Packaging and distributing
	Libraries and transports

	Embracing agile principles for responsive development
	Summary

	Chapter 7: Documenting and Releasing a Framework
	Establishing a robust documentation foundation
	Documentation as a continuation of an ADF
	Types of documentation
	Documentation focus by ADF maturity level

	Automating documentation generation
	Using source control systems for documentation publishing and hosting
	End-to-end generation, publishing, and hosting
	Navigation and search for ADF documentation
	Structuring navigation for ADF documentation
	Enhancing search with indexing and metadata
	Cross-linking and contextual navigation

	Step-by-step guide: Building and maintaining ADF documentation
	Creating a concept-level description
	Providing architecture references
	Writing tutorial guides for ADF adoption
	How-to guides for specific scenarios
	Generating and maintaining reference documentation
	Ongoing maintenance and documentation strategy

	Developing and optimizing API documentation for clarity and usability
	Documenting how to define and implement APIs
	Supporting application developers in creating their own API documentation
	Schema-driven versus code-first approach
	Integration with common documentation tools
	Enhancing developer productivity through integrated tooling
	Summarizing the documentation strategy for ADF-enabled APIs

	Implementing effective versioning and release strategies
	Build and deployment process
	Repository and branching strategy
	Build automation
	Release and artifact distribution

	Release lifecycle phases
	Complementary release practices
	Versioning and metadata

	Navigating issue tracking and collaboration platforms

	Summary

	Part 3: Evolving a Framework
	Sustaining relevance through continuous improvement

	Chapter 8: Evolving a Framework
	Embarking on an ADF initiative
	Uncovering the opportunity
	Collaborating: finding your team
	Identifying “quick wins”
	Get support to secure resources
	Making it transparent and useful for others
	Enjoying the process
	Guiding the ADF initiative: a product way
	Adopting the product mindset for your ADF
	Establishing feedback loops
	Prioritization and iteration
	Roadmapping beyond the initial build

	Measuring success and proving value
	Adoption metrics
	Developer Experience (DevEx) metrics
	SDLC impact metrics

	Closing the loop: measurement informs the path

	Hardening security along the ADF evolution path
	Secure design and architecture
	Secure-by-default framework APIs
	Strict abstraction boundaries and isolation
	Role-based access control for components
	Secure runtime patterns
	Language-specific security strategies

	Incident response and vulnerability disclosure
	Establishing a security team or responsible persons
	Triage and risk assessment
	Developing the fix in private
	Coordinated disclosure timing
	Preparing the advisory
	Issuing patches and updates
	Post-incident analysis
	Handling public vulnerability reports
	Incident response for compromises
	Community trust

	Security practices mapped to ADF maturity levels

	Finding inspiration from the creators
	Key role of Developer Experience (DX)
	Maintenance effort grows over time
	The priority of documentation
	The importance of community
	Framework security: responsibilities and challenges
	Balancing framework specialization and universalization

	AI-native development with an ADF
	Integrating generative AI with ADFs
	Constitutional AI as a guiding paradigm
	Anatomy of a framework constitution (FRAMEWORK.md)
	The system prompt: establishing the AI’s persona
	Embedding advanced prompting techniques in the constitution
	Meta-prompts and self-correction loops

	Multi-agent systems: a phased approach to a “panel of experts”
	Phase 1: the dedicated “framework expert”
	Phase 2: decomposition into a specialized panel
	Phase 3: hierarchical orchestration

	Summary
	1. What ADFs are all about and why they’re a big deal (Chapter 1)
	2. Why and how to get started with your ADF (Chapters 2 and 8)
	3. Smart building: good design, solid tech, and practical steps (Chapters 3, 4, 5, and 6)
	4. Making your framework real: docs, releases, and security (Chapters 6, 7, and 8)
	5. Keeping it going: a product approach for lasting value (Chapters 2 and 8)
	6. The never-ending story: the rewarding work of building frameworks (Chapter 8)
	7. Final words: the last mile

	Chapter 9: Unlock Your Book’s Exclusive Benefits
	How to unlock these benefits in three easy steps
	Step 1
	Step 2
	Step 3
	Need help?

	Index
	Other Books You May Enjoy

